UVa11021 Tribles解题报告

【题目描述】

万有引力定律:

“使物体相互靠近的力的大小与物体的质量成正比——而物体的质量又由同一种力决定。这是一个有趣并且有益的例子,说明了科学是如何用A证明B,再用B证明A的。”——安布罗斯·比尔斯(美国讽刺作家——译者注)。


你有一坨K个毛球(<星际迷航>中的种族——译者注)。这种毛球只会存活一天。在死亡之前,一个毛球有P_i的概率生出i个毛球(i=0,1,...,n-1)。m天后所有毛球都死亡的概率是多少?(包含在第m天前全部死亡的情况)

【输入格式】

输入包含多组数据。

输入文件的第1行是一个正整数N,表示数据组数。

每组数据的第1行有3个正整数n(1<=n<=1000),k(0<=k<=1000),m(0<=m<=1000)。

接下来有n行,给出P_0,P_1,...,P_n-1。

【输出格式】

对于第i组数据,输出"Case #i: ",后面是第m天后所有毛球均已死亡的概率。

【样例输入】

4

3 1 1

0.33

0.34

0.33

3 1 2

0.33

0.34

0.33

3 1 2

0.5

0.0

0.5

4 2 2

0.5

0.0

0.0

0.5

【样例输出】

Case #1: 0.3300000

Case #2: 0.4781370

Case #3: 0.6250000

Case #4: 0.3164063

【提示】

如果你的输出与标准答案相差不超过10^-5,那么你的答案就被认为是正确的。

题解:

因为毛球之间是相互独立的 所以可以令f[i]为1个毛球及其后代在i天内全部死亡的概率

那么f[i]=p[0]+p[1]f[i-1]+p[2]f[i-1]^2...p[n-1]f[i-1]^(n-1)

k个毛球用乘法原理算

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
double p[1010];
double f[1010];
int main(){
	freopen("tribbles.in","r",stdin);
	freopen("tribbles.out","w",stdout);
	int T;
	scanf("%d",&T);
	int n,m,k;
	for(int P=1;P<=T;P++){
		memset(f,0,sizeof(f));
		scanf("%d %d %d",&n,&k,&m);
		for(int i=1;i<=n;i++)
			scanf("%lf",&p[i]);
		f[1]=p[1];
		for(int i=2;i<=m;i++){
			f[i]+=p[1];
			for(int j=2;j<=n;j++)
				f[i]+=p[j]*pow(f[i-1],double(j-1));
		}
		printf("Case #%d: %.7lf\n",P,pow(f[m],k));
	}
return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值