【题目描述】
万有引力定律:
“使物体相互靠近的力的大小与物体的质量成正比——而物体的质量又由同一种力决定。这是一个有趣并且有益的例子,说明了科学是如何用A证明B,再用B证明A的。”——安布罗斯·比尔斯(美国讽刺作家——译者注)。
你有一坨K个毛球(<星际迷航>中的种族——译者注)。这种毛球只会存活一天。在死亡之前,一个毛球有P_i的概率生出i个毛球(i=0,1,...,n-1)。m天后所有毛球都死亡的概率是多少?(包含在第m天前全部死亡的情况)
【输入格式】
输入包含多组数据。
输入文件的第1行是一个正整数N,表示数据组数。
每组数据的第1行有3个正整数n(1<=n<=1000),k(0<=k<=1000),m(0<=m<=1000)。
接下来有n行,给出P_0,P_1,...,P_n-1。
【输出格式】
对于第i组数据,输出"Case #i: ",后面是第m天后所有毛球均已死亡的概率。
【样例输入】
4
3 1 1
0.33
0.34
0.33
3 1 2
0.33
0.34
0.33
3 1 2
0.5
0.0
0.5
4 2 2
0.5
0.0
0.0
0.5
【样例输出】
Case #1: 0.3300000
Case #2: 0.4781370
Case #3: 0.6250000
Case #4: 0.3164063
【提示】
如果你的输出与标准答案相差不超过10^-5,那么你的答案就被认为是正确的。
题解:
因为毛球之间是相互独立的 所以可以令f[i]为1个毛球及其后代在i天内全部死亡的概率
那么f[i]=p[0]+p[1]f[i-1]+p[2]f[i-1]^2...p[n-1]f[i-1]^(n-1)
k个毛球用乘法原理算
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
double p[1010];
double f[1010];
int main(){
freopen("tribbles.in","r",stdin);
freopen("tribbles.out","w",stdout);
int T;
scanf("%d",&T);
int n,m,k;
for(int P=1;P<=T;P++){
memset(f,0,sizeof(f));
scanf("%d %d %d",&n,&k,&m);
for(int i=1;i<=n;i++)
scanf("%lf",&p[i]);
f[1]=p[1];
for(int i=2;i<=m;i++){
f[i]+=p[1];
for(int j=2;j<=n;j++)
f[i]+=p[j]*pow(f[i-1],double(j-1));
}
printf("Case #%d: %.7lf\n",P,pow(f[m],k));
}
return 0;
}