目录
一、贝叶斯公式原理
在基础的概率学中,经典的有求独立事件的概率以及求关联时间的概率,贝叶斯所要解决的问题就是在有条件限制的情况下,求取某一事件发生的概率。
贝叶斯公式的核心是“条件概率”,譬如 P(B|A),就表示当 A 发生时,B 发生的概率,如果P(B|A)的值越大,说明一旦发生了 A,B 就越可能发生。两者可能存在较高的相关性。
条件概率是“贝叶斯公式”的关键所在,那么如何理解条件概率呢?其实我们可以从“相关性”这一词语出发。举一个简单的例子,比如小明和小红是同班同学,他们各自准时回家的概率是 P(小明回家) = 1/2 和 P(小红回家) =1/2,但是假如小明和小红是好朋友,每天都会一起回家,那么 P(小红回家|小明回家) = 1 (理想状态下)。
条件概率公式:
其中, P(B|A)表示:事件 A 发生的条件下,事件 B 发生的概率
P(A|B)表示:事件 B 发生的条件下,事件 A 发生的概率
朴素贝叶斯基于各特征之间相互独立,在给定类别为y的情况下,上式可以进一步表示为式:
上述两式结合:
对所有的类别P(X)相同,因此最终的朴素贝叶斯表达式: