垃圾邮件分类-朴素贝叶斯算法

目录

一、贝叶斯公式原理

二、使用朴素贝叶斯进行文档分类

三、Python代码实现


一、贝叶斯公式原理

        在基础的概率学中,经典的有求独立事件的概率以及求关联时间的概率,贝叶斯所要解决的问题就是在有条件限制的情况下,求取某一事件发生的概率。

        贝叶斯公式的核心是“条件概率”,譬如 P(B|A),就表示当 A 发生时,B 发生的概率,如果P(B|A)的值越大,说明一旦发生了 A,B 就越可能发生。两者可能存在较高的相关性。

        条件概率是“贝叶斯公式”的关键所在,那么如何理解条件概率呢?其实我们可以从“相关性”这一词语出发。举一个简单的例子,比如小明和小红是同班同学,他们各自准时回家的概率是 P(小明回家) = 1/2 和 P(小红回家) =1/2,但是假如小明和小红是好朋友,每天都会一起回家,那么 P(小红回家|小明回家) = 1 (理想状态下)。

        条件概率公式:

P(A|B) = \frac{P(A)P(B|A)}{P(B)}

其中, P(B|A)表示:事件 A 发生的条件下,事件 B 发生的概率

            P(A|B)表示:事件 B 发生的条件下,事件 A 发生的概率

朴素贝叶斯基于各特征之间相互独立,在给定类别为y的情况下,上式可以进一步表示为式:

 P(X|Y=y) = \prod_{i=1}^{d}P(xi|Y=y)

上述两式结合:

P(Y|X) = \frac{P(Y)\prod_{i=1}^{d}P(xi Y)}{P(X))}

对所有的类别P(X)相同,因此最终的朴素贝叶斯表达式:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值