207. 课程表(拓扑排序)

你这个学期必须选修 numCourses 门课程,记为 0 到 numCourses - 1 。

在选修某些课程之前需要一些先修课程。 先修课程按数组 prerequisites 给出,其中 prerequisites[i] = [ai, bi] ,表示如果要学习课程 ai 则 必须 先学习课程  bi 。

  • 例如,先修课程对 [0, 1] 表示:想要学习课程 0 ,你需要先完成课程 1 。

请你判断是否可能完成所有课程的学习?如果可以,返回 true ;否则,返回 false 。

示例 1:

输入:numCourses = 2, prerequisites = [[1,0]]
输出:true
解释:总共有 2 门课程。学习课程 1 之前,你需要完成课程 0 。这是可能的。

示例 2:

输入:numCourses = 2, prerequisites = [[1,0],[0,1]]
输出:false
解释:总共有 2 门课程。学习课程 1 之前,你需要先完成​课程 0 ;并且学习课程 0 之前,你还应先完成课程 1 。这是不可能的。

提示:

  • 1 <= numCourses <= 2000
  • 0 <= prerequisites.length <= 5000
  • prerequisites[i].length == 2
  • 0 <= ai, bi < numCourses
  • prerequisites[i] 中的所有课程对 互不相同

思路:这个题目抽象出来是有向图,而且是AOV网络(顶点表示活动的网络),实际上考查的是AOV网络的拓扑排序问题。

1、采用邻接表来表示有向图,抽象成:

(1)一个二维数组,里面每一个一维数组存以该索引为顶点的后继顶点。

(2)一个一维数组 in, 来表示每个顶点的入度

2、我们开始先根据输入来建立这个有向图,并将入度数组也初始化好。

3、设置一个stack:

(1)将所有入度为0的点压栈。

(2)从栈中退出栈顶元素输出,并把该顶点引出的所有有向边删去,也就是把它的各个邻接顶点的入度数-1。

(3)将新的入度数为零的顶点再入堆栈。

(4)重复过程(2)-(3),直到栈为空。这个时候,如果已经输出全部顶点,说明有向图中不存在环;如果没有输出全部顶点,那么剩下的顶点中存在入度不为零的顶点,说明有向图中存在环。

class Solution {
public:
    bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
        vector<vector<int> >g(numCourses, vector<int>());//存邻接顶点
        vector<int>in(numCourses);//存入度
        for(auto x: prerequisites){//初始化
            //学习课程x[0]之前,需要完成课程x[1]的学习,所以x[1]是前趋顶点,x[0]是后继顶点
            g[x[1]].push_back(x[0]);
            in[x[0]]++;
        }
        stack<int>s;
        for(int i=0; i<in.size(); ++i){
            if(in[i]==0) s.push(i);
        }
        while(!s.empty()){
            int n=s.top();
            s.pop();
            for(auto x:g[n]){
                if(--in[x]==0)
                    s.push(x);
            }
        }
        for(auto x:in){
            if(x) return false;
        }
        return true;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值