你这个学期必须选修 numCourses
门课程,记为 0
到 numCourses - 1
。
在选修某些课程之前需要一些先修课程。 先修课程按数组 prerequisites
给出,其中 prerequisites[i] = [ai, bi]
,表示如果要学习课程 ai
则 必须 先学习课程 bi
。
- 例如,先修课程对
[0, 1]
表示:想要学习课程0
,你需要先完成课程1
。
请你判断是否可能完成所有课程的学习?如果可以,返回 true
;否则,返回 false
。
示例 1:
输入:numCourses = 2, prerequisites = [[1,0]] 输出:true 解释:总共有 2 门课程。学习课程 1 之前,你需要完成课程 0 。这是可能的。
示例 2:
输入:numCourses = 2, prerequisites = [[1,0],[0,1]] 输出:false 解释:总共有 2 门课程。学习课程 1 之前,你需要先完成课程 0 ;并且学习课程 0 之前,你还应先完成课程 1 。这是不可能的。
提示:
1 <= numCourses <= 2000
0 <= prerequisites.length <= 5000
prerequisites[i].length == 2
0 <= ai, bi < numCourses
prerequisites[i]
中的所有课程对 互不相同
思路:这个题目抽象出来是有向图,而且是AOV网络(顶点表示活动的网络),实际上考查的是AOV网络的拓扑排序问题。
1、采用邻接表来表示有向图,抽象成:
(1)一个二维数组,里面每一个一维数组存以该索引为顶点的后继顶点。
(2)一个一维数组 in, 来表示每个顶点的入度。
2、我们开始先根据输入来建立这个有向图,并将入度数组也初始化好。
3、设置一个stack:
(1)将所有入度为0的点压栈。
(2)从栈中退出栈顶元素输出,并把该顶点引出的所有有向边删去,也就是把它的各个邻接顶点的入度数-1。
(3)将新的入度数为零的顶点再入堆栈。
(4)重复过程(2)-(3),直到栈为空。这个时候,如果已经输出全部顶点,说明有向图中不存在环;如果没有输出全部顶点,那么剩下的顶点中存在入度不为零的顶点,说明有向图中存在环。
class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int> >g(numCourses, vector<int>());//存邻接顶点
vector<int>in(numCourses);//存入度
for(auto x: prerequisites){//初始化
//学习课程x[0]之前,需要完成课程x[1]的学习,所以x[1]是前趋顶点,x[0]是后继顶点
g[x[1]].push_back(x[0]);
in[x[0]]++;
}
stack<int>s;
for(int i=0; i<in.size(); ++i){
if(in[i]==0) s.push(i);
}
while(!s.empty()){
int n=s.top();
s.pop();
for(auto x:g[n]){
if(--in[x]==0)
s.push(x);
}
}
for(auto x:in){
if(x) return false;
}
return true;
}
};