[笔记]狄利克雷卷积+莫比乌斯反演(未完待咕

前置芝士

调和级数

分析复杂度的时候还是有用的
百度百科

数学符号

常见的(<——假的)数学符号和意义

  • m ⊥ n m \perp n mn:m与n 垂直互质
整除分块

例题

二项式定理

( x + y ) n = ∑ i = 0 n C n i ∗ x i ∗ y n − i (x+y)^n=\sum_{i=0}^{n}C_{n}^{i}*x^{i}*y^{n-i} (x+y)n=i=0nCnixiyni

关于 g c d gcd gcd

说明: [ [ [balabala ] ] ]等于 1 1 1当且仅当balabala成立,否则为0

  • ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = = x ] ⇔ ∑ i = 1 ⌊ n x ⌋ ∑ j = 1 ⌊ m x ⌋ [ g c d ( i , j ) = = 1 ] \sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==x] \Leftrightarrow \sum_{i=1}^{\left \lfloor \frac{n}{x} \right \rfloor} \sum_{j=1}^{\left \lfloor \frac{m}{x} \right \rfloor}[gcd(i,j)==1] i=1nj=1m[gcd(i,j)==x]i=1xnj=1xm[gcd(i,j)==1]
  • ∑ i = 1 n ∑ j = 1 m i ∗ j ∗ [ g c d ( i , j ) = = x ] ⇔ ∑ i = 1 ⌊ n x ⌋ ∑ j = 1 ⌊ m x ⌋ i ∗ j ∗ [ g c d ( i , j ) = = 1 ] ∗ x 2 \sum_{i=1}^{n}\sum_{j=1}^{m}i*j*[gcd(i,j)==x] \Leftrightarrow \sum_{i=1}^{\left \lfloor \frac{n}{x} \right \rfloor} \sum_{j=1}^{\left \lfloor \frac{m}{x} \right \rfloor}i*j*[gcd(i,j)==1]*x^{2} i=1nj=1mij[gcd(i,j)==x]i=1xnj=1xmij[gcd(i,j)==1]x2
  • ∑ i = 1 n ∑ j = 1 m i ∗ j ∗ [ x ∣ g c d ( i , j ) ] ⇔ ∑ i = 1 ⌊ n x ⌋ ∑ j = 1 ⌊ m x ⌋ i ∗ j ∗ x 2 \sum_{i=1}^{n}\sum_{j=1}^{m}i*j*[x|gcd(i,j)] \Leftrightarrow \sum_{i=1}^{\left \lfloor \frac{n}{x} \right \rfloor} \sum_{j=1}^{\left \lfloor \frac{m}{x} \right \rfloor}i*j*x^{2} i=1nj=1mij[xgcd(i,j)]i=1xnj=1xmijx2
  • ∑ i = 1 n ∑ j = 1 m [ x ∣ g c d ( i , j ) ] ⇔ ⌊ n x ⌋ ⌊ m x ⌋ \sum_{i=1}^{n}\sum_{j=1}^{m}[x|gcd(i,j)] \Leftrightarrow \left \lfloor \frac{n}{x} \right\rfloor \left \lfloor \frac{m}{x} \right\rfloor i=1nj=1m[xgcd(i,j)]xnxm
  • ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = = 1 ] ⇔ ∑ i = 1 n ∑ j = 1 m ∑ d ∣ g c d ( i , j ) μ ( d ) \sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==1] \Leftrightarrow \sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{d|gcd(i,j)}\mu(d) i=1nj=1m[gcd(i,j)==1]i=1nj=1mdgcd(i,j)μ(d)
    --------------------------------------------- ⇔ ∑ d = 1 n μ ( d ) ∗ ∑ i = 1 n ∑ j = 1 m [ d ∣ g c d ( i , j ) ] \Leftrightarrow \sum_{d=1}^{n}\mu(d)*\sum_{i=1}^{n}\sum_{j=1}^{m}[d|gcd(i,j)] d=1nμ(d)i=1nj=1m[dgcd(i,j)]
  • d ( x ) d(x) d(x) x x x的约数个数: d ( i ∗ j ) = ∑ x ∣ i ∑ y ∣ j [ g c d ( x , y ) = = 1 ] d(i*j)=\sum_{x|i}\sum_{y|j}[gcd(x,y)==1] d(ij)=xiyj[gcd(x,y)==1],证明见例5

狄利克雷卷积&莫比乌斯反演

从狄利克雷卷积证明莫比乌斯反演
莫比乌斯反演栗子

常见的积性函数
  • ϵ ( n ) = [ n = = 1 ] \epsilon(n)=[n==1] ϵ(n)=[n==1],也有写作 ι \iota ι的:在卷积意义下相当u于1,对于任意一个 f , f ∗ ϵ = f f,f*\epsilon=f f,fϵ=f
  • I ( n ) = 1 I(n)=1 I(n)=1也有写作 u u u的,在卷积意义下和 μ \mu μ互为逆元,即 μ ∗ I = ϵ \mu * I=\epsilon μI=ϵ
  • i d ( n ) = n id(n)=n id(n)=n
一些摘出来的小套路
  • 枚举gcd
  • 当你想降一下时间复杂度时,枚举第二个分块中的某一项再进行处理可能是一个好选择。
栗子
  • BZOJ2440完全平方数(懵逼钨丝函数入门
  • POI2007 ZAP-Queries
    ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = = x ] \sum_{i=1}^{n} \sum_{j=1}^{m}[gcd(i,j)==x] i=1nj=1m[gcd(i,j)==x]
  • luoguP2257YY的GCD
    ∑ i = 1 n ∑ j = 1 n [ g c d ( i , j ) ∈ p r i m e ] \sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(i,j)\in prime] i=1nj=1n[gcd(i,j)prime]
  • P1829Carash的数字表格
    ∑ i = 1 n ∑ i = 1 m l c m ( i , j ) \sum_{i=1}^{n}\sum_{i=1}^{m}lcm(i,j) i=1ni=1mlcm(i,j)
  • SDOI2015约数个数和
    ∑ i = 1 n ∑ j = 1 m d ( i ∗ j ) \sum_{i=1}^{n}\sum_{j=1}^{m}d(i*j) i=1nj=1md(ij) ,其中 d ( i ∗ j ) d(i*j) d(ij)表示 i ∗ j i*j ij的约数个数
  • SDOI2017数字表格
    ∏ i = 1 n ∏ j = 1 m f [ g c d ( i , j ) ] \prod_{i=1}^{n}\prod_{j=1}^{m}f[gcd(i,j)] i=1nj=1mf[gcd(i,j)],其中 f [ x ] f[x] f[x]表示第 i i i项斐波那契数

杜教筛

又是一些小套路
栗子

先乱放了

没看过


完了推柿子真是太有趣了,秃并快乐着

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值