[笔记]狄利克雷卷积+莫比乌斯反演(未完带咕

前置芝士

调和级数

分析复杂度的时候还是有用的
百度百科

数学符号

常见的(<——假的)数学符号和意义

二项式定理

\((x+y)^n=\sum_{i=0}^{n}C_{n}^{i}*x^{i}*y^{n-i}\)

关于\(gcd\)

说明:\([\)balabala\(]\)等于\(1\)当且仅当balabala成立,否则为0

  • \(\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==x] \Leftrightarrow \sum_{i=1}^{\left \lfloor \frac{n}{x} \right \rfloor} \sum_{j=1}^{\left \lfloor \frac{m}{x} \right \rfloor}[gcd(i,j)==1]\)
  • \(\sum_{i=1}^{n}\sum_{j=1}^{m}i*j*[gcd(i,j)==x] \Leftrightarrow \sum_{i=1}^{\left \lfloor \frac{n}{x} \right \rfloor} \sum_{j=1}^{\left \lfloor \frac{m}{x} \right \rfloor}i*j*[gcd(i,j)==1]*x^{2}\)
  • \(\sum_{i=1}^{n}\sum_{j=1}^{m}i*j*[x|gcd(i,j)] \Leftrightarrow \sum_{i=1}^{\left \lfloor \frac{n}{x} \right \rfloor} \sum_{j=1}^{\left \lfloor \frac{m}{x} \right \rfloor}i*j*x^{2}\)
  • \(\sum_{i=1}^{n}\sum_{j=1}^{m}[x|gcd(i,j)] \Leftrightarrow \left \lfloor \frac{n}{x} \right\rfloor \left \lfloor \frac{m}{x} \right\rfloor\)
  • \(\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==1] \Leftrightarrow \sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{d|gcd(i,j)}\mu(d)\)
    ---------------------------------------------\(\Leftrightarrow \sum_{d=1}^{n}\mu(d)*\sum_{i=1}^{n}\sum_{j=1}^{m}[d|gcd(i,j)]\)
  • \(d(x)\)\(x\)的约数个数:\(d(i*j)=\sum_{x|i}\sum_{y|j}[gcd(x,y)==1]\),证明见例5

    狄利克雷卷积&莫比乌斯反演

从狄利克雷卷积证明莫比乌斯反演
莫比乌斯反演栗子

常见的积性函数
  • \(\epsilon(n)=[n==1]\),也有写作\(\iota\)的:在卷积意义下相当u于1,对于任意一个\(f,f*\epsilon=f\)
  • \(I(n)=1\)也有写作\(u\)的,在卷积意义下和\(\mu\)互为逆元,即\(\mu * I=\epsilon\)
  • \(id(n)=n\)

    一些摘出来的小套路
  • 枚举gcd
  • 当你想降一下时间复杂度时,枚举第二个分块中的某一项再进行处理可能是一个好选择。

栗子
栗子

没看过


完了推柿子真是太有趣了,秃并快乐着

转载于:https://www.cnblogs.com/SCL123/p/11248395.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值