狄利克雷卷积和莫比乌斯反演

积性函数

积性函数定义:
函数 f ( x ) f(x) f(x) 满足 g c d ( a , b ) = 1 gcd(a, b) = 1 gcd(a,b)=1时, f ( a b ) = f ( a ) f ( b ) f(ab) = f(a)f(b) f(ab)=f(a)f(b) f ( x ) f(x) f(x)为积性函数

常见积性函数 (具体证明可以百度=w=)
  • 欧拉函数 ϕ ( n ) ϕ(n) ϕ(n)
    ϕ ( n ) = n ∗ ∏ ( p i − 1 ) / p i ϕ(n) = n ∗∏(pi − 1)/pi ϕ(n)=n(pi1)/pi
  • 莫比乌斯函数 µ ( n ) µ(n) µ(n)
  1. n n n 有平方因子
    n = ∏ i = 1 t p i c i ( 表 示 n 有 t 个 互 不 相 同 质 因 子 p i , 每 个 p i 的 次 数 是 c i ) n=∏_{i=1}^{t}pi^{ci}(表示n有t个互不相同质因子pi,每个pi的次数是ci) n=i=1tpici(ntpipici)
    当某 c i > = 2 ( 即 有 平 方 因 子 ) ci>=2(即有平方因子) ci>=2(),则 µ ( n ) = 0 µ(n) = 0 µ(n)=0
  2. 否则,若 n n n k k k 个不同质数的乘积, µ ( n ) = ( − 1 ) k µ(n) = (−1)^k µ(n)=(1)k
  • 除数函数
    σ k ( n ) σ_k(n) σk(n) 表示所有正因子的 k k k 次幂和
    σ 0 ( n ) = d ( n ) σ_0(n) = d(n) σ0(n)=d(n) 表示正因子的个数
    σ 1 ( n ) = σ ( n ) σ_1(n) = σ(n) σ1(n)=σ(n) 表示正因子的和
完全积性函数
  • 幂函数
    i d k ( n ) = n k id_k(n) = n^k idk(n)=nk
    i d 0 ( n ) = 1 ( n ) = 1 id_0(n) = 1(n) =1 id0(n)=1(n)=1
    i d 1 ( n ) = i d ( n ) = n id_1(n) = id(n) = n id1(n)=id(n)=n
  • 单位函数
    ϵ ( n ) = [ n = 1 ] ϵ(n) = [n = 1] ϵ(n)=[n=1] 即 ϵ ( n ) 仅 当 n = 1 时 值 为 1 , 其 它 都 为 0 即ϵ(n)仅当n=1时值为1,其它都为0 ϵ(n)n=110

狄利克雷卷积

Dirichlet 卷积
  • 对两个数论函数 f , g f, g f,g,定义其 Dirichlet 卷积为新函数 f ∗ g f∗g fg,满足
    ( f ∗ g ) ( n ) = ∑ d ∣ n f ( d ) g ( n / d ) (f∗g)(n) = ∑_{d|n} f(d)g(n/d) (fg)(n)=dnf(d)g(n/d)
    满足以下规律
  • 交换律 f ∗ g = g ∗ f f ∗ g = g ∗ f fg=gf
  • 结合律 ( f ∗ g ) ∗ h = f ∗ ( g ∗ h ) (f ∗ g) ∗ h = f ∗ (g ∗ h) (fg)h=f(gh)
  • 分配律 f ∗ ( g + h ) = f ∗ g + f ∗ h f ∗ (g + h) = f ∗ g + f ∗ h f(g+h)=fg+fh
  • 单位元 f ∗ ϵ = f f ∗ ϵ = f fϵ=f
  • 重要性质:若 f , g f,g f,g 均为积性函数,则 f ∗ g f∗g fg 也是积性函数

已知积性函数 f , g f, g f,g 1 − n 1 − n 1n 的值,我们可以在 O ( n l o g n ) O(nlogn) O(nlogn) 的时间内求
( f ∗ g ) (f ∗ g) (fg) 1 − n 1 − n 1n

常见的Dirichlet卷积
  • d ( n ) = ∑ d ∣ n 1 d(n) = ∑_{d|n}1 d(n)=dn1, 即 d = 1 ∗ 1 d = 1 ∗ 1 d=11
  • σ ( n ) = ∑ d ∣ n d σ(n) = ∑_{d|n}d σ(n)=dnd, 即 σ = i d ∗ 1 σ = id ∗ 1 σ=id1
  • ϕ ( n ) = ∑ d ∣ n µ ( d ) ∗ n / d ϕ(n) = ∑_{d|n} µ(d)*n/d ϕ(n)=dnµ(d)n/d, 即 ϕ = µ ∗ i d ϕ = µ ∗ id ϕ=µid :由容斥原理可得
  • ϵ ( n ) = ∑ d ∣ n µ ( d ) ϵ(n) = ∑_{d|n} µ(d) ϵ(n)=dnµ(d), 即 ϵ = µ ∗ 1 ϵ = µ ∗ 1 ϵ=µ1 :二项式定理

莫比乌斯反演

莫比乌斯反演
  • ϵ = µ ∗ 1 ϵ = µ ∗ 1 ϵ=µ1
  • 若函数 f , g f, g f,g 满足 f ( n ) = ∑ d ∣ n g ( d ) f(n) = ∑_{d|n}g(d) f(n)=dng(d),则 g ( n ) = ∑ d ∣ n µ ( d ) f ( n / d ) g(n) = ∑_{d|n}µ(d)f(n/d) g(n)=dnµ(d)f(n/d)

证明: f = g ∗ 1 f = g∗1 f=g1 两边都卷上 µ µ µ 得到: f ∗ µ = g ∗ µ ∗ 1 ⇔ f ∗ u = g ∗ ϵ = g f*µ=g*µ*1⇔ f*u = g ∗ ϵ=g fµ=gµ1fu=gϵ=g

例题

YY 的 GCD
[CQOI2007] 余数之和
[POI2007]Zap-Queries
[国家集训队] 2154: Crash 的数字表格

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值