POJ-1845 Sumdiv(唯一分解定理,快速幂,约数和公式,同余模公式)

Sumdiv

Time Limit: 1000MSMemory Limit: 30000K
Total Submissions: 31351Accepted: 7684
Description

Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).

Input

The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.

Output

The only line of the output will contain S modulo 9901.

Sample Input
2 3
Sample Output
15
Hint

2^3 = 8.
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
15 modulo 9901 is 15 (that should be output).

题目链接:

http://poj.org/problem?id=1845

题意:

计算A^B 所有约数和s。s%MOD。A和B都很大(0<=A,B<=50000000).

思路:

本题需要用到唯一分解定理,快速幂,约数和公式,同余模公式。

(1).整数的唯一分解定理

任何整数都可以且尽可以分解成若干个素数相乘的形式。

A = p 1 k 1 ∗ p 2 k 2 ∗ . . . . . . ∗ p n k n A=p1^{k1}*p2^{k2}*......*pn^{kn} A=p1k1p2k2......pnkn

其中的pi各表示一个素数。

(2).约数和公式

按照整数的分解定理,我们有一个整数的约数之和公式为:
S = ( 1 + p 1 + p 1 2 + . . . + p 1 k 1 ) ∗ ( 1 + p 2 + p 2 2 + . . . + p 2 k 2 ) ∗ . . . . . . . ∗ ( 1 + p n + p n 2 + . . . + p n k n ) S=(1+p1+p1^{2}+...+p1^{k1})*(1+p2+p2^{2}+...+p2^{k2})*.......*(1+pn+pn^{2}+...+pn^{kn}) S=(1+p1+p12+...+p1k1)(1+p2+p22+...+p2k2).......(1+pn+pn2+...+pnkn)

还有一个常用的是
因数的个数为(1+k1)(1+k2)(1+k3)…(1+kn)。

(3).同余模公式
① ( a + b ) % m o d = ( a % m o d + b % m o d ) % m o d ; ① (a+b)\%mod = (a\%mod+b\%mod)\%mod; (a+b)%mod=(a%mod+b%mod)%mod;

② ( a ∗ b ) % m = ( a % m ∗ b % m ) % m ; ② (a*b) \% m = (a\%m*b\%m)\%m; (ab)%m=(a%mb%m)%m;

一、质因数分解
for(int i=2;i*i<=A;) //根号法的体现
{
    int k=0;//p是存素因子的,n是存其指数
    if (A%i==0)
    {
        p[k]=i;
        n[k]=0;
        while(A%i) //找到一个素因子就用此法计算其个数
        {
            n[k]++;
            A/=i;
        }
        k++;
    }
    if(i==2) //除了2其余素数都是奇数哦
         i++;
    else
        i+=2;
}

if(A!=1)//常规来讲,这时候的A已经被分解剩下1了,除非A本身就是素数
{
    p[k]=A;
    n[k++]=1;
}
二、二分法求等比数列的和

解决了A的分解问题,自然需要来解决一下S的求解问题,很明显S是一系列以pi为公比的等比数列和 之积。只要能解决等比数列和的问题那这道题就迎刃而解了啊。最最直接的方法是利用求和公式,但是别忘了,我们的S可是还需要对9901取模的,[pi^(ki*B)-1]/(pi-1)这个结果中pi-1未必和9901互素!因而,解决这个问题,就只好用二分法:

对于一个等比数列求和  S=1+q+q2+……qn

如果n为奇数,那么一共就有偶数个项了,

S=[1+q+……+q^(n/2)] * [1+q^(n/2+1)]

如果n为偶数,那么一共就是有奇数个项了,

S=[1+q+……+q^(n/2-1] * [1+q(n/2+1)]+q(n/2)

*如果记不住上面的公式的话,就举个例子自己算算,结果自然就很清楚了。*

ll sum(ll a, ll b)
{
    if(b == 0)
        return 1;
    if(b & 1) {
        return ((sum(a,b/2) % MOD) * (1+quick_Mod(a,b/2+1))%MOD)%MOD;
    }
    else
        return (((sum(a,b/2-1)%MOD) * (1+quick_Mod(a,b/2+1))%MOD)%MOD + quick_Mod(a,b/2) % MOD)%MOD;

}
代码:
#include<cstdio>
#include <iostream>
#include <cstring>
using namespace std;
typedef  long long ll;
const int maxn = 50000000;
const int MOD = 9901;

int tot;
int p[2000];
int n[2000];
ll quick_Mod(ll a, ll b)
{
    ll ans = 1;
    a %= MOD;
    while(b) {
        if(b & 1) {
            ans = (ans * a) % MOD;
        }
        a = (a * a) % MOD;
        b >>= 1;
    }
    return ans % MOD;
}
ll sum(ll a, ll b)
{
    if(b == 0)
        return 1;
    if(b & 1) {
        return ((sum(a,b/2) % MOD) * (1+quick_Mod(a,b/2+1))%MOD)%MOD;
    }
    else
        return (((sum(a,b/2-1)%MOD) * (1+quick_Mod(a,b/2+1))%MOD)%MOD + quick_Mod(a,b/2) % MOD)%MOD;

}
ll solve(ll a, ll b)
{
    tot = 0;

    memset(p, 0 , sizeof(p));
    for(int i = 2; i * i <= a; i++) {
        if(a % i == 0) {
            n[tot] = i;
            while(a % i == 0) {
                p[tot]++;
                a /= i;
            }
            tot++;
        }
    }
    if(a != 1) {
        n[tot] = a;
        p[tot++] = 1;
    }
    ll ans = 1;
    for(int i = 0; i < tot; i++) {
        ans = (ans * (sum(n[i], p[i]*b))%MOD) % MOD;
    }
    return ans % MOD;
}
int main()
{
    ll a, b;
    while(cin >> a >> b) {
        cout << solve(a,b)%MOD << endl;
    }


    return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值