数据的预处理
方法1:均值减法
对数据中每个独立特征减去平均值,代码X -= np.mean(X, axis=0),几何含义是将数据云的中心平移到原点
方法2:归一化
将数据中的所有维度都归一化,使其数值范围都近似相等。方法1,先对数据做零中心化,再每个维度都除以其标准差
一般流程:原始数据→每个维度都减去平均值得到中心化数据→每个维度都除以标准差来调整其数值范围
注意,这里减去和除以的平均值和方差都是训练集中的,不管是再训练、验证还是测试中
权重的初始化
小随机数权重初始化:权重一般初始化为接近0但不为0的数,叫小随机数权重初始化,代码W = 0.01 * np.random.randn(D,H)
使用1/sqrt(n)校准方差:将输入的方差归一化到1,因此对输入的数据除以其平方根,代码w = np.random.randn(n) / sqrt(n)
目前推荐w = np.random.randn(n) * sqrt(2.0/n)来进行权重的初始化
正则化
L2正则化:
本文介绍了数据预处理的重要步骤,包括均值减法和平移数据云中心至原点,以及通过归一化调整各维度数值范围的方法。此外,还讨论了权重初始化策略,如小随机数初始化和使用1/sqrt(n)校准方差的方法。
13万+

被折叠的 条评论
为什么被折叠?



