【计算机视觉】3.传统计算机视觉方法

本文详细探讨了传统计算机视觉中的关键模块,包括图像分割的阈值、边缘、区域和图论方法,以及人脸检测的Haar-like特征级联分类器,行人检测的HOG+SVM和DPM技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、大纲

图像分割

基于阈值、基于边缘
基于区域、基于图论

人脸检测

Haar-like 特征+级联分类器

行人检测

HOG+SVM
DPM

二、图像分割

基于阈值检测的方法
基于边缘检测的方法
基于区域的分割方法
基于图论的分割方法
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基于阈值检测的方法

在这里插入图片描述

基于边缘检测的方法

在这里插入图片描述
在这里插入图片描述

基于区域的分割方法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基于图论的分割方法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、人脸检测

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、行人检测

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

五、SVM

在这里插入图片描述
在这里插入图片描述在这里插入图片描述

六、DPM

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值