pandas的drop()中axis取值简便记忆法

一直对drop中axis取值代表的含义感到疑惑,网上有很多对axis取0或1时的解释,但都侧重于具体删除时的执行方向,按行删按列删,绕来绕去记了又忘。今天玩代码突然发现drop里axis取0或1其实是……先看例子:

df = pd.DataFrame([[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]], columns=["a", "b", "c", "d"])
>>> df
   a  b  c  d
0  1  1  1  1
1  2  2  2  2
2  3  3  3  3

首先,drop标签为a的一列,给它个axis=0,毫无悬念地报错了,看看出错的原因,“轴上不包含标签['a']”,也就是说代码运行时首先要在给定的0轴上找标签['a'],这当然找不到啦。

>>> df.drop('a',axis=0)
Traceback (most recent call last):
……
ValueError: labels ['a'] not contained in axis

既然这样,那我给它个在0轴上能找到的标签1:

>>> dff.drop(1,axis=0)
   a  b  c  d
0  1  1  1  1
2  3  3  3  3

drop成功!index为1的那一行被删掉了!再在axis=1方向上调戏它一下试试……果然不能在所选轴上找到标签[1]。

>>>dff.drop(1,axis=1)
Traceback (most recent call last):
……
ValueError: labels [1] not contained in axis

所以可以这么理解,设定axis是为了确定要删的标签是属于column还是index。这样是不是就好记多了。


  • 13
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值