准确率 召回率 F值 ROC AUC

准确率,召回率,F值,ROC,AUC
责任编辑:词汇网 发表时间:2016-4-23 20:08:08
度量表

1.准确率
(presion)p=TPTP+FP
理解为你预测对的正例数占你预测正例总量的比率,假设实际有90个正例,10个负例,你预测80(75+,5-)个正例,20(15+,5-)个负例实际上你的准确率为75/80=0.9375,但这个评价指标有什么问题呢,想想就知道,这里你并没有用到实际的正例数,那么仅仅靠你猜中的正例作为分母,你并不知道实际的正例有多少,你看召回率为75/90=0.83,就是说你的猜测局限于预测范围

2.召回率
(recall)r=TPTP+FN
理解为你预测对的正例数占真正的正例数的比率,
假设实际有90个正例,10个负例,你如果拍脑袋说有100(90+,10-)个正例,召回率为90/90=1,这样也是不合理的,特别是在正负样本失衡,正样本接近于总数的时候从文本检索的角度来分析下相应的解释:
3. F值为p和r的调和平均值 F=2rpp+r
单一的准确率高和召回率高并不能说明问题,所以才有了F值得衡量指标
如上实例实际上 F=0.882,介于准确率和召回率之间。
4.ROC曲线
对于0,1两类分类问题,一些分类器得到的结果往往不是0,1这样的标签,如神经网络,得到诸如0.5,0,8这样的分类结果。这时,我们人为取一个阈值,比如0.4,那么小于0.4的为0类,大于等于0.4的为1类,可以得到一个分类结果。同样,这个阈值我们可以取0.1,0.2等等。取不同的阈值,得到的最后的分类情况也就不同。

如下面这幅图:

这里写图片描述

蓝色表示原始为负类分类得到的统计图,红色为正类得到的统计图。那么我们取一条直线,直线左边分为负类,右边分为正,这条直线也就是我们所取的阈值。

阈值不同,可以得到不同的结果,但是由分类器决定的统计图始终是不变的。这时候就需要一个独立于阈值,只与分类器有关的评价指标,来衡量特定分类器的好坏。

还有在类不平衡的情况下,如正样本90个,负样本10个,直接把所有样本分类为正样本,得到识别率为90%。但这显然是没有意义的。

如上就是ROC曲线的动机。

关于两类分类问题,原始类为positive,negative,分类后的类别为p,n。排列组合后得到4种结果

于是我们得到四个指标,分别为真阳,伪阳;伪阴,真阴。

ROC空间将伪阳性率(FPR)定义为 X 轴,真阳性率(TPR)定义为 Y 轴。这两个值由上面四个值计算得到,公式如下:

TPR:在所有实际为阳性的样本中,被正确地判断为阳性之比率。

TPR=TP/(TP+FN)

FPR:在所有实际为阴性的样本中,被错误地判断为阳性之比率。

FPR=FP/(FP+TN)

放在具体领域来理解上述两个指标。

如在医学诊断中,判断有病的样本。

那么尽量把有病的揪出来是主要任务,也就是第一个指标TPR,要越高越好。

而把没病的样本误诊为有病的,也就是第二个指标FPR,要越低越好。

不难发现,这两个指标之间是相互制约的。如果某个医生对于有病的症状比较敏感,稍微的小症状都判断为有病,那么他的第一个指标应该会很高,但是第二个指标也就相应地变高。最极端的情况下,他把所有的样本都看做有病,那么第一个指标达到1,第二个指标也为1。

我们以FPR为横轴,TPR为纵轴,得到如下ROC空间。

我们可以看出,左上角的点(TPR=1,FPR=0),为完美分类,也就是这个医生医术高明,诊断全对。

点A(TPR>FPR),医生A的判断大体是正确的。中线上的点B(TPR=FPR),也就是医生B全都是蒙的,蒙对一半,蒙错一半;下半平面的点C(TPR

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值