准确率,精准率,召回率,真正率,假正率,ROC/AUC

前言

  最近在看到这些词得时候老是混淆,看了之后还很容易遗忘,于是查了些资料把他们记录下来。
我们在设计深度学习网络模型的时候经常要对其进行评估,评估就要用到这些东西,在接介绍这个率,那个率之前,我先来介绍下什么是混淆矩阵,如下表所示:
混淆矩阵:
在这里插入图片描述

  • P(Positive):代表1
  • N(Negative):代表0
  • T(True):代表预测正确
  • F(False):代表预测错误

TP:预测为1,预测正确,即实际1
FP:预测为1,预测错误,即实际0
FN:预测为0,预测错误,即实际1
TN:预测为0,预测正确,即实际0
简单记这个混淆矩阵就是前面一个表示预测正确

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

I松风水月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值