问题描述
幸运数是波兰数学家乌拉姆命名的。它采用与生成素数类似的“筛法”生成
。首先从1开始写出自然数1,2,3,4,5,6,....
1 就是第一个幸运数。
我们从2这个数开始。把所有序号能被2整除的项删除,变为:
1 _ 3 _ 5 _ 7 _ 9 ....
把它们缩紧,重新记序,为:
1 3 5 7 9 .... 。这时,3为第2个幸运数,然后把所有能被3整除的序号位置的数删去。注意,是序号位置,不是那个数本身能否被3整除!! 删除的应该是5,11, 17, ...
此时7为第3个幸运数,然后再删去序号位置能被7整除的(19,39,...)
最后剩下的序列类似:
1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79, ...
输入格式
输入两个正整数m n, 用空格分开 (m < n < 1000*1000)
输出格式
程序输出 位于m和n之间的幸运数的个数(不包含m和n)。
样例输入1
1 20
样例输出1
5
样例输入2
30 69
样例输出2
8
import java.util.Scanner;
/**
* nums:表示所有数的数组
* key:表示当前幸运数的值,依据此幸运对nums进行压缩
* pos:依据此得到下一个幸运数
* time:压缩时每个数向前移动的步数,即通过 幸运数取出数的个数
*
* @author Administrator
*
*/
public class LuckNum {
private static int nums[],m,n,key=2,pos=0,cur,time,all;
public static void main(String[] args) {
// TODO 自动生成的方法存根
Scanner read=new Scanner(System.in);
String str=read.nextLine();
String strr[]=str.split(" ");
m=Integer.valueOf(strr[0]);
n=Integer.valueOf(strr[1]);
nums=new int[n];
for(int i=0;i<n;i++){
nums[i]=i+1;
}
while(key<n){
time=0;
for(int i=0;i<n;i++){
if(nums[i]!=0){
if((i+1)%key==0){
time++;
nums[i]=0;
}else{
nums[i-time]=nums[i];
if(i-time<i){
nums[i]=0;
}
}
}else{
break;
}
}
pos++;
key=nums[pos];
if(key==0){
break;
}
if(key>m&&key<n){
all++;
}else if(key==n){
break;
}
}
System.out.println(all);
}
}