问题描述
幸运数是波兰数学家乌拉姆命名的。它采用与生成素数类似的“筛法”生成。 首先从1开始写出自然数1,2,3,4,5,6,….
1 就是第一个幸运数。
我们从2这个数开始。把所有序号能被2整除的项删除,变为:
1 _ 3 _ 5 _ 7 _ 9 ….
把它们缩紧,重新记序,为:
1 3 5 7 9 ….
。这时,3为第2个幸运数,然后把所有能被3整除的序号位置的数删去。注意,是序号位置,不是那个数本身能否被3整除!! 删除的应该是5,11,
17, …此时7为第3个幸运数,然后再删去序号位置能被7整除的(19,39,…)
最后剩下的序列类似:
1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73,
75, 79, …输入格式
输入两个正整数m,n, 用空格分开 (m < n < 1000*1000)
输出格式
程序输出 位于m和n之间的幸运数的个数(不包含m和n)。
样例输入1
1 20
样例输出1
5
样例输入2
30 69
样例输出2
8
代码如下:
package PREV_10;
import java.util.Scanner;
public class Main {
/*
* 2 3 4 5 6 7 8 9 10 11 12 13......
* 2 3 _ 5 _ 7 _ 9 _ 11 _ 13......
* 2 _ _ 5 _ 7 _ _ _ 11 _ 13......
* ..............
*/
public static void main(String[] args) {
Scanner cin=new Scanner(System.in);
int m=cin.nextInt();
int n=cin.nextInt();
int N=1000*1000;
int a[]=new int[N];
int k=1;
for(int j=1;j<=N;j+=2){
a[k]=j;
k++;
}
int b[]=new int[N/2];
int temp=2;
while(temp<=1000){
int t=1;
for(int i=1;i<k;i++){
if(i%a[temp]!=0){
b[t]=a[i];
t++;
}
}
for(int i=1;i<t;i++){
a[i]=b[i];
}
temp++;
k=t;
}
int sum=0;
for(int i=1;i<=n;i++){
if(a[i]>m&&a[i]<n){
sum++;
}
}
System.out.print(sum);
}
}