历届试题 幸运数(筛子法)

问题描述

幸运数是波兰数学家乌拉姆命名的。它采用与生成素数类似的“筛法”生成。 首先从1开始写出自然数1,2,3,4,5,6,….

1 就是第一个幸运数。

我们从2这个数开始。把所有序号能被2整除的项删除,变为:

1 _ 3 _ 5 _ 7 _ 9 ….

把它们缩紧,重新记序,为:

1 3 5 7 9 ….
。这时,3为第2个幸运数,然后把所有能被3整除的序号位置的数删去。注意,是序号位置,不是那个数本身能否被3整除!! 删除的应该是5,11,
17, …

此时7为第3个幸运数,然后再删去序号位置能被7整除的(19,39,…)

最后剩下的序列类似:

1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73,
75, 79, …

输入格式
输入两个正整数m,n, 用空格分开 (m < n < 1000*1000)

输出格式

程序输出 位于m和n之间的幸运数的个数(不包含m和n)。

样例输入1

1 20 

样例输出1

5 

样例输入2

30 69 

样例输出2

8 

代码如下:

package PREV_10;
import java.util.Scanner;
public class Main {
    /*
     * 2 3 4 5 6 7 8 9 10 11 12 13......
     * 2 3 _ 5 _ 7 _ 9 _  11 _  13......
     * 2 _ _ 5 _ 7 _ _ _  11 _  13......
     * ..............
     */
    public static void main(String[] args) {
        Scanner cin=new Scanner(System.in);
        int m=cin.nextInt();
        int n=cin.nextInt();
        int N=1000*1000;
        int a[]=new int[N];
        int k=1;
        for(int j=1;j<=N;j+=2){
            a[k]=j;
            k++;
        }
        int b[]=new int[N/2];
        int temp=2;
        while(temp<=1000){
            int t=1;
            for(int i=1;i<k;i++){
                if(i%a[temp]!=0){
                    b[t]=a[i];
                    t++;
                }
            }
            for(int i=1;i<t;i++){
                a[i]=b[i];
            }
            temp++;
            k=t;
        }

        int sum=0;
        for(int i=1;i<=n;i++){
            if(a[i]>m&&a[i]<n){
                sum++;
            }
        }           
        System.out.print(sum);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值