04-树7 二叉搜索树的操作集

本题要求实现给定二叉搜索树的5种常用操作。

函数接口定义:

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

其中BinTree结构定义如下:

typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};
  • 函数InsertX插入二叉搜索树BST并返回结果树的根结点指针;
  • 函数DeleteX从二叉搜索树BST中删除,并返回结果树的根结点指针;如果X不在树中,则打印一行Not Found并返回原树的根结点指针;
  • 函数Find在二叉搜索树BST中找到X,返回该结点的指针;如果找不到则返回空指针;
  • 函数FindMin返回二叉搜索树BST中最小元结点的指针;
  • 函数FindMax返回二叉搜索树BST中最大元结点的指针;

解:这5种操作集,前三个主要用递归的方法进行操作,后两种根据二叉树的特性,最小的数肯定在左子树的左叶子,最大的数肯定在右子树的右叶子。

整体的全部程序样式:

#include <stdio.h>
#include <stdlib.h>

typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};

void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT );  /* 中序遍历,由裁判实现,细节不表 */

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

int main()
{
    BinTree BST, MinP, MaxP, Tmp;
    ElementType X;
    int N, i;

    BST = NULL;
    scanf("%d", &N);
    for ( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Insert(BST, X);
    }
    printf("Preorder:"); PreorderTraversal(BST); printf("\n");
    MinP = FindMin(BST);
    MaxP = FindMax(BST);
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        Tmp = Find(BST, X);
        if (Tmp == NULL) printf("%d is not found\n", X);
        else {
            printf("%d is found\n", Tmp->Data);
            if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
            if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
        }
    }
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Delete(BST, X);
    }
    printf("Inorder:"); InorderTraversal(BST); printf("\n");

    return 0;
}
/* 你的代码将被嵌在这里 */

void PreorderTraversal( BinTree BT ){
    if (BT){
        printf("%d ",BT->Data);
        PreorderTraversal(BT->Left);
        PreorderTraversal(BT->Right);
    }
}
void InorderTraversal( BinTree BT ){
    if (BT){
        InorderTraversal( BT->Left );
        printf("%d ",BT->Data);
        InorderTraversal( BT->Right );
    }
}

BinTree Insert( BinTree BST, ElementType X ){
    if (BST==NULL){
        BST=(struct TNode *)malloc(sizeof(struct TNode));
        BST->Data=X;
        BST->Left=BST->Right=NULL;
        return BST;
    }
    if (X<BST->Data)    BST->Left=Insert(BST->Left,X);
    if (X>BST->Data)    BST->Right=Insert(BST->Right,X);
    return BST;
}

BinTree Delete( BinTree BST, ElementType X ){
    Position Tmp;
    if(!BST)    printf("Not Found\n");
    else {
        if( X < BST->Data)
            BST ->Left = Delete(BST->Left, X);
        else if(X > BST->Data )
            BST ->Right = Delete(BST->Right , X);
        else {
            if(BST->Left && BST->Right) {
                Tmp=FindMin(BST->Right);
                BST->Data = Tmp ->Data;
                BST->Right=Delete(BST->Right,BST->Data);
            }else {
                Tmp = BST;
                if(!BST->Left) BST = BST->Right;
                else if(!BST->Right)    BST = BST->Left;
                free(Tmp);
            }
        }
    }
    return BST;
}

Position Find( BinTree BST, ElementType X ){
    if (BST==NULL) return BST;
    if (X==BST->Data) return BST;
    if (X>BST->Data) return Find(BST->Right,X);
    if (X<BST->Data) return Find(BST->Left,X);
    else
    	return BST;
}
Position FindMin( BinTree BST ){
    if (BST){
        while (BST->Left!=NULL){
            BST=BST->Left;
        }
    }
    return BST;
}
Position FindMax( BinTree BST ){
    if (BST){
        while (BST->Right!=NULL){
            BST=BST->Right;
        }
    }
    return BST;
}


描述 用函数实现如下二叉排序算法: (1) 插入新结点 (2) 前序、中序、后序遍历二叉 (3) 中序遍历的非递归算法 (4) 层次遍历二叉 (5) 在二叉中查找给定关键字(函数返回值为成功1,失败0) (6) 交换各结点的左右子 (7) 求二叉的深度 (8) 叶子结点数 Input 第一行:准备建的结点个数n 第二行:输入n个整数,用空格分隔 第三行:输入待查找的关键字 第四行:输入待查找的关键字 第五行:输入待插入的关键字 Output 第一行:二叉的先序遍历序列 第二行:二叉的中序遍历序列 第三行:二叉的后序遍历序列 第四行:查找结果 第五行:查找结果 第六行~第八行:插入新结点后的二叉的先、中、序遍历序列 第九行:插入新结点后的二叉的中序遍历序列(非递归算法) 第十行:插入新结点后的二叉的层次遍历序列 第十一行~第十三行:第一次交换各结点的左右子后的先、中、后序遍历序列 第十四行~第十六行:第二次交换各结点的左右子后的先、中、后序遍历序列 第十七行:二叉的深度 第十八行:叶子结点数 Sample Input 7 40 20 60 18 50 56 90 18 35 30 Sample Output 40 20 18 60 50 56 90 18 20 40 50 56 60 90 18 20 56 50 90 60 40 1 0 40 20 18 30 60 50 56 90 18 20 30 40 50 56 60 90 18 30 20 56 50 90 60 40 18 20 30 40 50 56 60 90 40 20 60 18 30 50 90 56 40 60 90 50 56 20 30 18 90 60 56 50 40 30 20 18 90 56 50 60 30 18 20 40 40 20 18 30 60 50 56 90 18 20 30 40 50 56 60 90 18 30 20 56 50 90 60 40 4 4
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值