一、简介
Celery是使用python编写的分布式任务调度框架。
它有几个主要的概念:
(1)celery应用
用户编写的代码脚本,用来定义要执行的任务,然后通过broker将任务发送到消息队列中
(2)broker
-
代理,通过消息队列在客户端和worker之间进行协调。
-
celery本身并不包含消息队列,它支持以下消息队列(RabbitMQ、Redis、Amazon SQS、Zookeeper)
- 更多关于Broker见官方文档
(3) backend
-
数据库,用来存储任务返回的结果。
(4)worker
-
工人,用来执行broker分派的任务
- 任务,定义的需要执行的任务
二、版本要求
Celery5.1 要求:
python(3.6,3.7,3.8)
Celery 是一个资金最少的项目,所以我们不支持 Microsoft Windows。
更多更详细的版本要求见官方文档
三、安装
使用pip安装:
pip install -U Celery
(1)捆绑包
Celery还定义了一组包,用于安装Celery和给定的依赖项。
可以在pip命令中实现中括号来指定这些依赖项。
pip install -U Celery
pip install "celery[redis]"
具体支持的依赖包见官方文档
四、简单使用
(1)选择一个broker
使用celery首先需要选择一个消息队列。安装任意你熟悉的前面提到的celery支持的消息队列。
安装redis容器
因为redis默认没有密码,使用云服务器部署redis容器时需要设置密码。新建配置文件 /root/redis.conf 编写如下
配置:
requirepass pythonvip
输入docker images命令,查看redis:alpine镜像是否下载。
没有的话先下载 redis:alpine镜像
docker pull redis:alpine
然后运行如下命令创建容器:
docker run -d -p 9000:6379 -v /root/redis.conf:/usr/local/etc/redis/redis.conf --name
myredis redis:alpine redis-server /usr/local/etc/redis/redis.conf
docker ps命令查看redis容器是否启动。
redis的连接url格式如下:
redis://:password@hostname:port/db_number
进入容器:
[root@hecs-394374 /]# docker exec -it myredis /bin/sh
keys * 看所有的key
(error) NOAUTH Authentication required. 说明你还没有密码,
你得登录,所以咱先退出一下,因为我们没有用户名,只有密码。可以 -a 密码
redis-cli -a pythonvip
(2)编写一个celery应用
首先我们需要编写一个celery应用,它用来创建任务和管理wokers,它要能够被其他的模块导入。
创建一个 tasks.py 文件:
from celery import Celery
app = Celery('tasks', broker='redis://localhost:6379/0')
@app.task
def add(x, y):
return x + y
第一个参数 tasks 是当前模块的名称,它可以省略,建议以当前模块名为名称。
第二个关键字参数 broker='redis://localhost:6379/0' 指定我们使用redis作为消息队列,并指定连接地址。
(3)运行celery的worker服务
cd到ce.py所在目录,然后运行下面的命令来启动worker服务
TODO:记得去云服务器安全组中开放与redis的映射端口相对应的端口
celery -A tasks worker --loglevel=INFO
windows下的折中办法(学习调试,千万不要用在生产环境下)
1. 安装 eventlet 库
pip install eventlet
2. 运行worker是加上-P参数
celery -A tasks worker --loglevel=INFO -P eventlet
(4)调用任务
>>> from tasks import add
>>> add.delay(4,4)
通过调用任务的 delay 来执行对应的任务。celery会把执行命令发送到broker,broker再将消息发送给worker服务 来执行,如果一切正常你将会在worker服务的日志中看到接收任务和执行任务的日志。
(5)保存结果
如果你想要跟踪任务的状态以及保存任务的返回结果,celery需要把它发送到某个地方。celery提供多种结果后端。
我们这里以reids为例,修改 tasks.py 中的代码,添加一个redis后端。
# 创建应用
app = Celery('celery_project', broker='redis://:pythonvip@121.36.45.254:9000/7',
backend='redis://:pythonvip@121.36.45.254:9000/8',
include=['celery_project.tasks'] # 指定任务路径
)
# 配置
app.conf.update(
result_expires=3600 # 结果过期时间
)
更多结果后端见官方文档
重新启动worker服务,重新打开python解释器
>>> from tasks import add
>>> result = add.delay(4,4)
ready() 方法返回任务是否执行完成:
>>> result.ready()
False
还可以等待结果完成,但很少使用这种方法,因为它将异步调用转换为同步调用
>>> result.get(timeout=1)
8
五、在应用中使用celery
(1)创建项目
项目结构:
proj/__init__.py
/celery.py
/tasks.py
proj/celery.py:
# 定义应用
from celery import Celery
app = Celery('celery_proj',
broker='redis://localhost:6379/0',
backend='redis://localhost:6379/1',
include=['celery_proj.tasks']) # 告诉我们的任务在哪里
# 配置
app.conf.update(
result_expires=3600, # 结果过期时间
)
在这个模块中我们创建了一个 Celery 模块。要在你的项目中使用celery只需要导入此实例。
proj/tasks.py
# 定义任务
from .celery import app
@app.task
def add(x, y):
return x + y
@app.task
def mul(x, y):
return x * y
@app.task
def xsum(numbers):
return sum(numbers)
(2)启动worker
celery -A celery_proj worker --loglevel=INFO
(3)调用任务
In [6]: from celery_proj.tasks import *
In [7]: res = mul.delay(3,4)
In [8]: res.get()
Out[8]: 12
In [9]:
六、 在django中使用celery
要在你的django项目中使用celery,首先需要定义一个Celery的实例。
如果你又django项目如下:
proj/
- manage.py
- proj/
- __init__.py
- settings.py
- urls.py
那么推荐的方法是创建一个新的 proj/proj/celery.py 模块来定义芹菜实例:
file: proj/proj/celery.py
import os
from celery import Celery
# 为`celery`设置默认的django设置模块
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'proj.settings')
app = Celery('proj')
# 设置配置来源
app.config_from_object('django.conf:settings', namespace='CELERY')
# 加载所有的已注册django应用中的任务
app.autodiscover_tasks()
@app.task(bind=True)
def debug_task(self):
print(f'Request: {self.request!r}')
然后你需要在你的 proj/proj/__init__.py 模块中导入这个应用程序(就是lemontest的__init__文件中)。这样就可以保证 Django 启动时加载应用程 序,以便于 @shared_task 装饰器的使用。
proj/proj/__init__.py :
from .celery import app as celery_app
__all__ = ('celery_app',)
请注意,此示例项目布局适用于较大的项目,对于简单的项目,可以使用包含定义应用程序和任务的单个模块。
接下来我们来解释一下 celery.py 中的代码,首先,我们设置 celery 命令行程序的环境变量DJANGO_SETTINGS_MODULE 的默认值:
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'lemontest.settings')
这一行的作用是加载当前django项目的环境设置,特别是当需要在异步任务中用到orm。它必须在创建应用程序实例 之前。
app = Celery('lemontest')
我们还添加了Django设置模块作为Celery的配置源。这意味着我们不必使用多个配置文件,而是直接在Django的配 置文件中配置Celery。
app.config_from_object('django.conf:settings', namespace='CELERY')
大写命名空间意味着所有 Celery配置项 必须以大写指定,并以 CELERY_ 开头,因此例如 broker_url 设置变为 CELERY_BROKER_URL 。
例如,Django项目的配置文件可能包括:
settings.py
CELERY_TIMEZONE = "Asia/Shanghai"
CELERY_TASK_TRACK_STARTED = True
CELERY_TASK_TIME_LIMIT = 30*60
配置详细文档
接下来,可重用应用程序的常见做法是在单独的 tasks.py 模块中定义所有任务, Celery 有一种方法可以自动发现 这些模块:
app.autodiscover_tasks()
使用上面的行,Celery 将按照 tasks.py 约定自动从所有已安装的应用程序中发现任务:
- app1/
- tasks.py
- models.py
- app2/
- tasks.py
- models.py
这样就不必手动将各个模块添加到 CELERY_IMPORTS 设置中。
七、使用@shared_task 装饰器
我们编写的任务可能会存在于可重用的应用程序中,而可重用的应用程序不能依赖与项目本身,因此无法直接导入 celery应用实例。
@shared_task 装饰器可以让我们无需任何具体的celery实例创建任务:
demoapp/tasks.py
# Create your tasks here
from demoapp.models import Widget
from celery import shared_task
@shared_task
def add(x, y):
return x + y
@shared_task
def mul(x, y):
return x * y
@shared_task
def xsum(numbers):
return sum(numbers)
@shared_task
def count_widgets():
return Widget.objects.count()
@shared_task
def rename_widget(widget_id, name):
w = Widget.objects.get(id=widget_id)
w.name = name
w.save()
八、项目中使用selery
(1)在lemontest包的__init__文件中:目的是项目启动的时候可以加载celery应用程序
from .celery import app as celery_app
__all__ = ('celery_app',)
(2)在lemontest包中新建celery文件
# -*- coding: utf-8 -*-
# time: 2022/11/15 21:08
# file: celery.py
# author: fade
import os
from celery import Celery
# 为`celery`设置默认的django设置模块
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'lemontest.settings')
app = Celery('lemontest')
# 设置配置来源为django项目的配置文件
app.config_from_object('django.conf:settings', namespace='CELERY')
# 加载所有的已注册django应用中的任务
app.autodiscover_tasks()
(3)在配置文件setting中添加配置:
# celery配置
CELERY_TIMEZONE = "Asia/Shanghai"
CELERY_WORKER_HIJACK_ROOT_LOGGER = False # 禁止celery自己的日志器
CELERY_BROKER_URL = 'redis://:pythonvip@121.36.27.254:9000/7'
# CELERY_BACKEND_URL = 'redis://:pythonvip@121.36.27.254:9000/8' # 需要保存结果,就配置
(4)在tasks文件中导入shared_task
from celery import shared_task
@shared_task
def run_plan(plan_id, env_id, record_id):
"""执行测试计划"""
...
...
(5)若使用“应用中使用celery”的方法,就会要限制于代码依赖这个应用;代码强耦合;
(6)配置文件
LOGGING = {
'version': 1,
'disable_existing_loggers': False, # 是否禁用已经存在的日志器
# 日志格式化
'formatters': { # 日志信息显示的格式
'verbose': {
'format': '%(levelname)s %(asctime)s %(module)s %(lineno)d %(message)s'},
'simple': {
'format': '%(levelname)s %(module)s %(lineno)d %(message)s'},
},
# 日志过滤器
'filters': { # 对日志进行过滤
'require_debug_true': { # django在debug模式下才输出日志
'()': 'django.utils.log.RequireDebugTrue', },
},
# 日志处理器
'handlers': { # 日志处理方法
'console': { # 向终端中输出日志
'level': 'INFO',
'filters': ['require_debug_true'],
'class': 'logging.StreamHandler',
'formatter': 'simple'},
'file': { # 向文件中输出日志
'level': 'INFO',
'class': 'logging.handlers.RotatingFileHandler',
'filename': BASE_DIR / 'logs/lemontest.log', # 日志文件的位置
'maxBytes': 30 * 1024 * 1024,
'backupCount': 10,
'formatter': 'verbose'},
# Celery日志处理器
'celery': {
'level': 'INFO',
'class': 'logging.handlers.RotatingFileHandler',
'filename': BASE_DIR / 'logs/celery.log', # 日志文件的位置
'maxBytes': 30 * 1024 * 1024,
'backupCount': 10,
'formatter': 'verbose'
},
},
# 日志器
'loggers': { # 日志器
'django': { # 定义了一个名为django的日志器
'handlers': ['console', 'file'], # 可以同时向终端与文件中输出日志
'propagate': True, # 是否继续传递日志信息
'level': 'INFO', # 日志器接收的最低日志级别
},
'celery': { # 定义了一个名为celery的日志器
'handlers': ['console', 'celery'], # 可以同时向终端与文件中输出日志
'propagate': True, # 是否继续传递日志信息
'level': 'INFO', # 日志器接收的最低日志级别
},
}
}
(7)视图中调用方法修改
run_plan.delay(plan_id=pk,env_id=env_id,record_id=record.id)