目录
基于dlib的人脸疲劳检测
疲劳驾驶在造成交通事故的危险因素中高居第三位,在死亡交通事故原因中占首位。
研究开发疲劳预警系统可以有效地减少疲劳驾驶所造成的交通事故,其中基于视频的疲劳驾驶监测系统因其实时性、非接触性得到国内外的广泛关注。
使用基于Haar特征的Adaboost算法训练分类器,实现嘴的正常状态和张嘴状态的区分,再针对区分结果实现二次处理,计算嘴的张开程度,判定是否处于疲劳状态。
处理方法:
选取打哈欠及各种张嘴时的嘴部图像为正样本,选取脸部其他部分图像为负样本,正样本和负样本图像均从网上搜索得到,正样本图像250张,大小统一缩放为24×24,负样本图像550张。
打哈欠检测原理
由于嘴位于人脸的下半部分,所以搜索区域可缩小至人脸下半部分,节省搜索时间。检测完成得到打哈欠(或张嘴)的图片,则再用局部搜索确定二