本学习笔记为阿里云天池龙珠计划机器学习训练营的学习内容,学习链接为:https://tianchi.aliyun.com/specials/promotion/aicampml
阿里天池训练营——机器学习:逻辑回归
原理
Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别),所以利用了Logistic函数(或称为Sigmoid函数),函数形式为
l o g i ( z ) = 1 1 + e − z logi(z) = \frac{1}{1+e^{-z}} logi(z)=1+e−z1
通过上图我们可以发现 Logistic 函数是单调递增函数,并且在z=0的时候取值为0.5,并且 l o g i ( ⋅ ) logi(\cdot) logi(⋅)函数的取值范围为 ( 0 , 1 ) (0,1) (0,1)。
——————————————————————————————
回归的基本方程为 z = w 0 + ∑ i N w i x i z=w_0+\sum_i^N w_ix_i z=w0+∑iNwixi,
将回归方程写入其中为:
p = p ( y = 1 ∣ x , θ ) = h θ ( x , θ