1110 Complete Binary Tree(完全二叉树)

本文介绍了一种通过层序遍历判断给定节点结构是否构成完全二叉树的方法,并提供了一个具体的C++实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:

给出一个n表示有n个结点,这n个结点为0~n-1,给出这n个结点的左右孩子,求问这棵树是不是完全二叉树

思路:

这题就是先建树,找出根结点然后层序遍历,我一开始是把每层的结点数存储下来看是否等于2^i,结果有两个案例没过,看别人的代码有更好的方法,就是记录遍历的个数cnt,如果遇到空结点并且(cnt==n)那就是完全二叉树,如果(cnt!=n)那就不是完全二叉树。注意会存在一开始cnt!=n而后来cnt==n的情况,所以只取第一次cnt!=n的情况,可以设立一个bool值判断。

#include<bits/stdc++.h>
using namespace std;
const int maxn = 50;
int n;

struct node {
	int left, right;
	int pre=-1;
}tree[maxn];

int main() {
	scanf("%d", &n);
	for (int i = 0; i < n; i++) {
		string u, v;
		cin >> u >> v;
		if (u == "-") {
			tree[i].left = -1;
		} else {
			int uu = stoi(u);
			tree[i].left = uu;
			tree[uu].pre = i;
		}
		if (v == "-") {
			tree[i].right = -1;
		} else {
			int vv = stoi(v);
			tree[i].right = vv;
			tree[vv].pre = i;
		}
	}
	int root = 0;
	for (; tree[root].pre != -1; root = tree[root].pre);
	queue<int> que;
	que.push(root);
	int cnt = 0,lastnode=0;
	while (!que.empty()) {
		int u = que.front(); que.pop();
		if (u != -1) {
			lastnode = u;
			cnt++;
		} else {
			if (cnt != n) {
				printf("NO %d", root);
			} else {
				printf("YES %d", lastnode);
			}
			return 0;
		}
		que.push(tree[u].left);
		que.push(tree[u].right);
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值