自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(57)
  • 资源 (2)
  • 收藏
  • 关注

原创 OpenAI提出的Prover-Verifier Games(PVG)是什么?

Prover-Verifier Games(PVG)作为一种新型的交互式证明系统,为AI模型的可解释性和安全性提供了有力保障。通过本文的介绍,相信大家对PVG的底层原理和公式有了更深入的了解。在未来,PVG有望在更多领域发挥重要作用,助力AI技术的发展。

2024-07-20 15:26:03 290

原创 检索增强生成Retrieval-Augmented Generation(RAG)简介

Retrieval-Augmented Generation(RAG)是一种结合检索和生成的模型。它利用外部知识库(如维基百科、网页等)为生成任务提供支持,从而提高生成质量。RAG的核心思想是在生成过程中,动态地从外部知识库中检索相关信息,并将其融入生成过程中。本文详细介绍了Retrieval-Augmented Generation(RAG)的原理、公式及优势。作为一种结合检索和生成的模型,RAG在处理长文本、知识密集型任务方面具有显著优势。未来,RAG有望在自然语言处理领域发挥更大作用。

2024-07-20 15:16:47 604

原创 智能座舱背后手势识别技术原理科普

手势识别技术涵盖了静态和动态手势识别,涉及图像预处理、手势分割、特征提取和分类等多个方面。通过高效的技术手段,如数据增强、多模态融合和实时反馈,可以显著提升手势识别的准确性和鲁棒性。微软 Kinect、Google MediaPipe、Leap Motion 和智能座舱系统等实际应用案例展示了这些技术在不同场景中的有效性和应用前景。未来,手势识别技术将不断发展,向更高的识别精度、更广泛的应用场景、更自然的交互体验、更严格的安全隐私保护和更智能的座舱系统迈进。

2024-07-19 17:58:56 837

原创 智能座舱背后Face ID(人脸识别)技术原理科普

智能座舱中,Face ID技术通过人脸识别来提供更安全和便捷的用户体验。本文将详细介绍Face ID的技术原理、使用细节,并通过公式解释关键部分,同时说明Face ID的完整流程及各部分注意事项。

2024-07-19 15:06:27 685

原创 智能座舱中的DMS(Driver Monitoring System)——分心与疲劳检测

头部姿态估计通过构建3D人脸模型,并结合2D图像中的关键点位置来拟合头部的三维姿态。:主要采用基于深度学习的目标检测网络(如YOLO, Faster R-CNN),结合面部关键点检测(如Dlib)来识别驾驶员头部位置、视线方向以及面部表情。疲劳检测通过分析驾驶员的生理信号(如心率变异性HRV、脑电波EEG)和行为信号(如眨眼频率、头部晃动)来评估其疲劳状态。:视线方向估计通过眼动跟踪技术,结合眼球中心位置和瞳孔反射点的位置,计算视线向量v,进而推断视线方向。是根据头部姿态参数计算的3D模型的2D投影。

2024-07-18 20:19:57 646

原创 大模型中的采样(Sampling)选择机制详解

采样选择机制通过不同的方法从模型的输出概率分布中选择下一个生成的词,从而影响生成文本的特性和质量。本文详细介绍了大模型中的几种经典采样选择机制,包括随机采样、Top-k采样、Top-p(Nucleus)采样、温度采样、束搜索(Beam Search)和逆向温度采样。每种机制有不同的特点和适用场景,选择适当的机制可以有效地控制生成文本的质量和多样性。希望通过本文的介绍,读者能够理解并应用这些采样选择机制,提高生成模型的表现。

2024-07-18 18:56:10 800

原创 大模型中的MoE是什么?

MoE通过将任务分配给多个专家模型并引入门控机制,有效地减少了计算复杂度,提高了模型的效率和性能。不同类型的MoE模型可以根据具体的应用场景进行选择和调整。通过合理设计和使用MoE,能够显著提升深度学习模型的训练和推理效率。

2024-07-17 15:25:30 1416

原创 什么是端到端(End-to-End)?

端到端方法在人工智能领域的应用前景广阔,其优势在于简化流程和全局优化。然而,在实际应用中,我们需要根据具体场景权衡其优劣势,选择合适的方法。在数据稀缺、高可解释性需求和多任务复杂系统中,传统方法可能仍然具有不可替代的价值。通过结合端到端方法与传统方法的优势,我们可以更好地应对现实中的各种挑战,推动人工智能技术的发展和应用。

2024-07-17 13:34:25 968

原创 Attention机制解析

Attention机制在自然语言处理(NLP)和计算机视觉(CV)等领域取得了广泛的应用。其核心思想是通过对输入数据的不同部分赋予不同的权重,使模型能够更加关注重要的信息。本文将详细介绍Attention的原理,包括Self-Attention和Cross-Attention的机制、公式解析以及代码实现,并探讨其在实际中的应用。

2024-07-16 14:11:41 919

原创 多模态CLIP浅解

CLIP通过对比学习方法在大规模图文配对数据上进行预训练,使其在文本和图像之间建立了强大的关联。CLIP不仅在图像搜索、文本生成、图像分类等任务中表现出色,还能进行零样本分类等复杂任务。其强大的多模态理解能力使得CLIP在多个领域具有广泛的应用前景。通过详细的公式解释和代码示例,相信读者能够更好地理解CLIP的原理和应用。希望这篇文章能对您深入理解和应用CLIP有所帮助。

2024-07-16 09:46:53 1016

原创 GPT-4从0到1搭建一个Agent简介

在人工智能领域,Agent是一种能够感知环境并采取行动以实现特定目标的系统。本文将简单介绍如何基于GPT-4搭建一个Agent。本文详细介绍了如何基于GPT-4从0到1构建一个Agent,包括感知、决策和行动模块的实现,以及如何将GPT-4与强化学习方法结合,进一步优化智能体的表现。通过具体的代码示例,展示了Agent的基本架构和工作原理。希望对各位在构建智能Agent方面有所帮助。

2024-07-15 12:25:42 1070

原创 浅谈Scaling Law

在机器学习和深度学习领域,(扩展定律)描述了模型性能(如准确率、损失等)如何随着模型规模(参数数量)、数据量和计算资源(如计算时间、显存等)的变化而变化。这些定律有助于研究人员和工程师理解如何有效地扩展模型以获得更好的性能。在深度学习的早期阶段,人们主要通过经验和试验来确定模型规模和训练数据量。然而,随着模型和数据集的不断增大,这种试验的方法变得越来越昂贵和耗时。因此,理解和应用扩展定律变得越来越重要,它可以帮助我们预估模型性能,合理规划资源。扩展定律为我们提供了理解模型性能如何随规模变化的理论基础。

2024-07-15 11:10:41 966

原创 大模型应用中CoT(思维链)技术详细介绍

在自然语言处理(NLP)领域中,尤其是语言模型(如GPT-3, BERT等)的应用中,理解和推理复杂的文本信息变得越来越重要。Chain-of-Thought(CoT)作为一种新的推理方法,通过引导模型逐步思考和推理,从而提高复杂问题的解答能力。传统的语言模型在处理复杂推理任务时往往难以提供令人满意的结果。CoT技术通过模拟人类思维的逐步推理过程,将复杂问题分解为一系列简单的步骤,从而提高模型的推理性能和解释能力。

2024-07-13 11:59:58 957

原创 大模型应用中什么是IFT(指令微调)?

在文本摘要任务中,我们希望模型能生成给定文章的简短摘要。指令: “请为以下文章生成一个简短的摘要。输入文章: “人工智能技术正在迅速发展,特别是在自然语言处理领域…”输出摘要: “人工智能技术在自然语言处理领域迅速发展。Instruction Fine-Tuning 作为一种新兴的微调方法,通过自然语言指令来引导模型在特定任务上的表现。其主要优势在于提高准确性、增强灵活性和简化训练过程。在实际应用中,通过明确的指令,我们可以更容易地让模型执行复杂任务,从而大大提升人工智能系统的实用性和可靠性。

2024-07-13 11:15:14 1073

原创 什么是Foundation Models(基础模型)?

Foundation Models代表了人工智能发展的一个重要方向,凭借其强大的泛化能力和广泛的应用前景,已经成为AI研究和应用的核心工具。未来,随着技术的不断进步,我们有理由相信Foundation Models将为更多行业带来变革性的影响。希望本文对您了解Foundation Models有所帮助。如果您有任何疑问或想法,欢迎在评论区交流讨论。

2024-07-12 14:33:22 1054

原创 ViT(Vision Transformer)简介

线性投影z0ixpiEz0i​xpi​E位置编码z0ixpiEEposiz0i​xpi​EEposi​自注意力机制AttentionQKVsoftmaxQKTdkVAttentionQKVsoftmaxdk​​QKT​V我们使用的是Kaggle上的皮肤病变分类数据集,该数据集包含各种类型的皮肤病变图像,每个图像都标注了具体的病变类型。我们将使用ViT模型对这些图像进行分类。

2024-07-12 13:54:26 967

原创 LoRA:低秩适配的深度学习模型简介

在深度学习中,特别是自然语言处理(NLP)领域,预训练语言模型(如GPT、BERT等)已经取得了显著的成果。然而,这些模型通常具有数亿甚至数百亿的参数,在进行特定任务的微调时,所需的计算资源和存储需求非常庞大。LoRA 的提出正是为了解决这一问题。

2024-07-11 11:48:30 730 1

原创 什么是RLHF(基于人类反馈的强化学习)?

基于人类反馈的强化学习(RLHF)是一种结合强化学习和人类反馈的技术,通过人类对智能体行为的评价,指导智能体的学习过程,使其行为更符合人类期望。本文通过公式、通俗易懂的示例和简化的代码解释了RLHF的基本原理和实现方法,并介绍了一些常用的技巧,以帮助读者更好地理解和应用这一技术。希望这些内容能够为读者提供有价值的参考。

2024-07-11 11:36:01 850 1

原创 大模型应用中什么是SFT(监督微调)?

监督微调(Supervised Fine-Tuning, SFT)是对已经预训练的模型进行特定任务的训练,以提高其在该任务上的表现。预训练模型通常在大量通用数据上进行训练,学到广泛的语言知识和特征。在SFT过程中,利用特定任务的数据,对模型进行进一步调整,使其更适合该任务。监督微调(SFT)通过使用特定任务的数据集对预训练模型进行进一步训练,从而优化模型在该任务上的性能。这种方法在自然语言处理领域有广泛的应用,如文本分类、问答系统和对话生成等。

2024-07-10 12:09:22 1264 1

原创 LLM大模型应用中的安全对齐的简单理解

在大模型应用中,安全对齐通常指的是确保模型的输出和行为与预期目标和社会规范相一致,不会产生有害或不当的结果。伦理和道德对齐:确保模型的输出不违反伦理和道德准则。法律和法规对齐:确保模型的行为符合相关法律和法规要求。用户意图对齐:确保模型的输出与用户的预期和需求一致,避免误导或错误的信息。社会价值对齐:确保模型的行为和输出符合社会普遍接受的价值观和标准。

2024-07-10 11:14:37 1141 1

原创 基于智能座舱视觉DMS/OMS/RMS的简介

随着智能驾驶技术的迅猛发展,智能座舱逐渐成为汽车科技领域的热点话题。在智能座舱系统中,驾驶员监控系统(DMS)、乘员监控系统(OMS)以及舱室监控系统(RMS)是三大重要的子系统。本文将详细介绍DMS、OMS和RMS的发展历史,并探讨其在未来智能驾驶中的应用前景,结合当前法规要求和业界现状,提供真实可信的数据支持。本文回顾了智能座舱中DMS、OMS和RMS的发展历史,分析了其关键技术和未来发展趋势。

2024-07-09 13:09:49 853 1

原创 决策树算法简单介绍:原理和方案实施

决策树(Decision Tree)是一种常用的机器学习算法,它既可以用于分类任务,也可以用于回归任务。由于其直观性和解释性,决策树在数据分析和模型构建中得到了广泛的应用。本文将深入探讨决策树算法的原理、具体实现、优化方法以及实际应用。决策树算法以其直观性和解释性,成为机器学习领域中一种重要的分类和回归方法。通过特征选择、递归分裂和剪枝等步骤,可以构建出有效的决策树模型。本文介绍了决策树的基本原理,并通过库实现了一个简单的决策树分类器。同时,讨论了决策树算法的优化方法及其在实际中的应用。

2024-07-09 11:04:02 981

原创 掌握MM-LLM的必备知识:原理、实现与示例

MM-LMM,全称为Multi-Modal Large Language Model,是一种能够同时处理多种模态数据的大型语言模型。这种模型不仅可以处理文本,还能够理解和生成图像、语音等其他类型的数据。

2024-07-09 09:23:24 816

原创 超详细的 Linux 环境下 Anaconda 安装与使用教程

在数据科学和机器学习领域,Anaconda 是一个非常受欢迎的发行版,提供了许多常用的包和工具。本文将详细介绍如何在 Linux 系统上安装和配置 Anaconda 环境,并展示如何高效地使用它。Anaconda 是一个强大的工具,可以帮助我们更高效地进行数据科学和机器学习项目的开发与管理。希望本文能帮助你顺利安装和使用 Anaconda。在实践中不断探索和总结,会有更多的收获。

2024-07-08 15:14:40 1454

原创 Linux - VIM 全面教程

VIM 是一个强大的文本编辑器,被广泛用于 Linux 系统上。对于许多程序员和系统管理员来说,熟练掌握 VIM 是一项非常重要的技能。本教程将全面介绍 VIM 的基础知识和高级功能,帮助你更好地利用这一工具。通过以上教程,相信你已经掌握了 VIM 的基本使用方法和一些高级功能。希望你能在日常工作中充分利用 VIM 提高效率。如果你有任何问题或建议,欢迎在评论区留言。

2024-07-08 15:08:18 410

原创 大语言模型系列-Transformer介绍

Transformer模型主要由编码器(Encoder)和解码器(Decoder)两个部分组成,每个部分又由多个相同的层(Layer)堆叠而成。每一层都包含两个子层:多头自注意力机制(Multi-Head Self-Attention Mechanism)和前馈神经网络(Feed-Forward Neural Network)。Transformer模型通过自注意力机制和多头注意力机制,有效地捕捉序列中不同位置之间的依赖关系,并通过位置编码引入位置信息。

2024-07-08 14:51:26 911

原创 安防一体机使用记录

选择U盘作为系统启动盘,实现请备份好U盘的文件,因为制作过程会将U盘格式化。4.发现依然无法ping通外网和局域网内其他服务,修改网卡配置文件,增加IP地址,网关等配置,如下图。5.选择完语言后进行下一步,点击安装位置,这里选择我们电脑自身的硬盘,不要选择错哦,还有一。6.这里选择的自动分区,最后会提示重装系统前的数据空间会被释放出来,跟着提示点击确定。4.关机,插入制作好的启动盘,开机可以看到如下界面,选择第一个进行安装。6.配置yum源,安装必备的软件,首先查询系统的版本。

2024-07-05 09:54:10 658

原创 VScode在linux下调试代码备忘

tasks.json文件用于更新代码,更新可执行文件,launch.json文件调用可执行文件options:为生成的makefile文件位置。该视频讲解了vscode在window下配置单个源文件/多个源文件/CMakeLists.txt工程,如何进行调试。总结:如果只配置launch.json文件,可以执行调试,当修改代码后,还是保持原来的代码进行调试;如果配置了tasks.json文件,当修改代码后,直接执行了make,再调试就是执行新的代码。3、tasks.json文件配置。

2024-07-05 09:22:43 384

原创 奥比中光astra_pro相机使用记录

环境下配置了opencv版本比较多,导致,字符串类型的数据乱码。a.用于快速查看相机是否安装正确;:但是执行时仍然出现运行不了等问题。b.可以可视化调整参数和显示效果。根据对应的型号找到需要的包工具。可以直接按照官方的开发手册安装。

2024-07-04 09:29:11 738

原创 相机标定浅谈

在图像测量过程以及机器视觉应用中,为确定空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系,必须建立相机成像的几何模型,这些几何模型参数就是相机参数。在大多数条件下这些参数必须通过实验与计算才能得到,这个求解参数的过程就称之为相机标定(或摄像机标定)。

2024-07-04 09:13:49 1326

原创 晶视 TPU-CV183x 开发板调研和测试验证

TPU:CPU:ROIPooling暂未发现能够自定义算子暂未发现 OP 级接口。

2024-07-03 09:30:54 831

原创 GITLAB配置CI教程

a、1和2使用刚才获取的URL和TOKENb、4表示TAG,设置好需要记住,比如你这个是x86_64_linux,后续在写ci脚本的时候TAG需要和这个对应;c、6表示的是默认运行ci的服务器地址,8.9这个可以使用个人账号或者公共账号都可;d、上述图片中没有标记数字的步骤,可以使用默认值直接enter;重复第三步的路径,查看有如下的内容,即配置成功。gitlab仓库有一些脚本的模板,可以自己选择,当然进一步学习高阶用法可以在网上找相关资料,或者从其他配置好的项目中去抄,最终目的就是为了创建一个。

2024-07-03 09:16:35 639

原创 LLM-Transformer:经典与前沿方法详解

大规模语言模型(LLM)是当前自然语言处理(NLP)领域的核心技术,而Transformer架构作为LLM的基础,极大地推动了这一领域的发展。本文将详细介绍LLM-Transformer的经典方法和最新进展,并提供相关论文的链接以便深入学习。

2024-07-02 12:11:07 991

原创 目标检测技术概述与最新进展

目标检测技术在过去的几十年里取得了长足的进步,从传统的滑动窗口和HOG-SVM方法,到深度学习时代的R-CNN和YOLO系列,再到如今的Transformers和自监督学习方法。每一次技术革新都带来了检测精度和速度的提升。相信在不久的将来,随着计算机视觉技术的不断发展,目标检测将会在更多实际应用中发挥更大的作用。希望本文能够帮助读者了解目标检测的经典方法和最新进展。如果您对这些方法感兴趣,可以阅读相关的论文,深入了解其原理和实现细节。

2024-07-02 11:51:16 781

原创 互联网场景下人脸服务基线方案总结

1.1序号术语或缩略语说明性定义12345671.4从人脸服务基线的测试结果中,可以看出,在当前的测试标准下,人脸服务的效果不理想,最大的召回率和准确率都比较低,其中的问题有的是出现在测试标准中所以需要对测试的指标重新进行制定,也有的问题是出现在服务,所以需要对人脸服务引擎本身进一步的优化。

2024-07-01 14:40:08 879

原创 互联网场景下人脸服务解决方案优化设计

1.1序号术语或缩略语说明性定义12345671.4。

2024-07-01 14:25:41 1068

原创 深入理解LibTorch:从安装到API详解

本文全面介绍了LibTorch的安装方法和关键API的使用,旨在为深度学习领域的开发者提供一份详实的指南,助力他们更高效地利用LibTorch进行模型开发与部署。无论是初学者还是有经验的开发者,都可以从中获得有价值的信息和实用的技巧。

2024-06-29 15:03:46 753

原创 valgrind使用浅谈

Valgrind是一款用于内存调试、内存泄漏检测以及性能分析的软件开发工具,它可在以下平台上运行: X86/Linux、AMD64/Linux、ARM/Linux、ARM64/Linux、PPC32/Linux、PPC64/Linux、PPC64LE/Linu x、S390X/Linux、MIPS32/Linux、MIPS64/Linux、X86/Solaris , AMD64/Solaris, ARM/Android (2.3.x 及 更 高 版 本 ), ARM64/Android, X86/And

2024-06-29 09:34:47 687

原创 基于高通8155的SNPE-PTQ量化方法介绍

若尚未执行量化,执行上步命令时终端将输出黄色警告信息提示,则前往量化服务器的。效果测试原理:snpe-net-run分别推理浮点模型、量化模型,计算。脚本化执行量化步骤和分步手动执行效果相同,但大大简化了步骤。若尚未执行量化,执行上步命令时终端将输出黄色警告信息提示,则切换到。登录(远程桌面的系统空间不足,已无法创建新用户),连接进入后通常在。资源,命令完成后需再执行下面两步;资源,命令完成后需再执行下面三步;下的文件夹名称,需保持对应,不可随意修改。已完成脚本编写,只需按步骤执行脚本即可。

2024-06-28 14:01:28 1034

原创 联发科MT8666-NNAPI移植

(4) 编译部署:build_android.bat → delivery.bat。(1) target部署至/data/local/tmp/bin下。(3) 需要先运行Carcorder APK,再运行DMS APK。(5)摄像头无法获取图像而导致卡住的问题已提相关同事处理。(3) 拷贝npu版本库里的模型及库文件至工程。原因:domain位置不对,需要更新模型。不用创建,网络的输入输出节点需要创建。(1) 只需要视觉DMS,其他不需要。(2) 车机需要联网(引擎需要权限)改变输入的类型,详情参见。

2024-06-28 12:06:29 1114

Deep Learning中文版本

Deep Learning中文版本,Yoshua Bengio 新书《Deep Learning》中文版发布。该书由北京大学张志华老师团队负责翻译。本书于学习研究目的,不得用于任何商业行为。

2017-10-09

和单片机有关的四十个实验

单片机的40个实验,适于初学者可以自己学习设计电路,内容比较丰富

2010-10-31

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除