22 最近共同先祖(Lowest Common Ancestor of a Binary Tree)

1 题目

题目:最近共同先祖(Lowest Common Ancestor of a Binary Tree)
描述:给定二叉树的根节点和两个子节点,找到两个节点的最近公共父节点(LCA)。最近公共祖先是两个节点的公共的祖先节点且具有最大深度。假设给出的两个节点都在树中存在。

lintcode题号——88,难度——medium

样例1:

输入:tree = {1},A = 1,B = 1
输出:1
解释:

二叉树如下(只有一个节点):

        1

LCA(1,1) = 1

样例2:

输入:tree = {4,3,7,#,#,5,6},A = 3,B = 5
输出:4
解释:

二叉树如下:

    4
   / \
  3   7
     / \
    5   6
              
LCA(3, 5) = 4

2 解决方案

2.1 思路

  寻找最近共同祖先,可以将所有的情况分类分析,如果两个子节点分别在左右子树,则当前节点为LCA;如果两个子节点都在一侧的子树内,则LCA也在那一侧的子树内;如果其中一个子节点就是当前节点,则LCA即为当前节点。

2.2 图解

情况一:(A、B分别在左右子树内,则LCA就是当前根节点,返回root即可)

当前节点root
左子树
右子树
包含A
包含B

情况二:(A、B都在左子树内,则LCA一定在左子树内,直接返回左子树的返回值)

当前节点root
左子树
右子树
包含A
包含B

情况三:(A、B都在右子树内,则LCA一定在右子树内,直接返回右子树的返回值)

当前节点root
左子树
右子树
包含A
包含B

情况四:(A或者B就是当前根节点,则LCA就是当前根节点,返回root)

当前节点root也是A
左子树
右子树
包含B
当前节点root也是B
左子树
右子树
包含A

2.3 时间复杂度

  需要完整遍历整棵树,算法的时间复杂度为O(n)。

2.4 空间复杂度

  算法的空间复杂度为O(1)。

3 源码

3.1 遍历法

细节:

  1. 使用分治法处理,在左右子树中寻找给定的节点A、B,对返回值需要做些调整。
  2. 若在子树中找到了A和B,则返回它们的LCA;
  3. 若在子树中只找到A就返回A,只找到B就返回B;
  4. 若在子树中没有找到A或B,则返回空,即找到nullptr、A、B都返回root。

C++版本:

/**
* Definition of TreeNode:
* class TreeNode {
* public:
*     int val;
*     TreeNode *left, *right;
*     TreeNode(int val) {
*         this->val = val;
*         this->left = this->right = NULL;
*     }
* }
*/
/*
* @param root: The root of the binary search tree.
* @param A: A TreeNode in a Binary.
* @param B: A TreeNode in a Binary.
* @return: Return the least common ancestor(LCA) of the two nodes.
*/
TreeNode * lowestCommonAncestor(TreeNode * root, TreeNode * A, TreeNode * B) {
    // write your code here
    if (root == nullptr || root == A || root == B) // 找到nullptr、A、B都返回root
    {
        return root;
    }

    TreeNode * leftResult = lowestCommonAncestor(root->left, A, B);
    TreeNode * rightResult = lowestCommonAncestor(root->right, A, B);

    if (leftResult != nullptr && rightResult != nullptr) // 左右子树都找到结果,返回当前节点,即LCA
    {
        return root;
    }
    if (leftResult != nullptr) // 只有左子树有结果,返回该结果,即LCA在左子树中,返回值即LCA
    {
        return leftResult;
    }
    if (rightResult != nullptr) // 只有右子树有结果,返回该结果,即LCA在左子树中,返回值即LCA
    {
        return rightResult;
    }

    return nullptr;
}
以下是C#中二叉树的lowest common ancestor的源代码: ```csharp using System; public class Node { public int value; public Node left; public Node right; public Node(int value) { this.value = value; this.left = null; this.right = null; } } public class BinaryTree { public Node root; public BinaryTree() { this.root = null; } public Node LowestCommonAncestor(Node node, int value1, int value2) { if (node == null) { return null; } if (node.value == value1 || node.value == value2) { return node; } Node left = LowestCommonAncestor(node.left, value1, value2); Node right = LowestCommonAncestor(node.right, value1, value2); if (left != null && right != null) { return node; } return (left != null) ? left : right; } } public class Program { public static void Main() { BinaryTree tree = new BinaryTree(); tree.root = new Node(1); tree.root.left = new Node(2); tree.root.right = new Node(3); tree.root.left.left = new Node(4); tree.root.left.right = new Node(5); tree.root.right.left = new Node(6); tree.root.right.right = new Node(7); Node lca = tree.LowestCommonAncestor(tree.root, 4, 5); Console.WriteLine("Lowest Common Ancestor of 4 and 5: " + lca.value); lca = tree.LowestCommonAncestor(tree.root, 4, 6); Console.WriteLine("Lowest Common Ancestor of 4 and 6: " + lca.value); lca = tree.LowestCommonAncestor(tree.root, 3, 4); Console.WriteLine("Lowest Common Ancestor of 3 and 4: " + lca.value); lca = tree.LowestCommonAncestor(tree.root, 2, 4); Console.WriteLine("Lowest Common Ancestor of 2 and 4: " + lca.value); } } ``` 在上面的代码中,我们定义了一个Node类和一个BinaryTree类。我们使用BinaryTree类来创建二叉树,并实现了一个LowestCommonAncestor方法来计算二叉树中给定两个节点的最近公共祖先。 在LowestCommonAncestor方法中,我们首先检查给定节点是否为null或与给定值之一匹配。如果是,则返回该节点。否则,我们递归地在左子树和右子树上调用LowestCommonAncestor方法,并检查它们的返回值。如果左子树和右子树的返回值都不为null,则当前节点是它们的最近公共祖先。否则,我们返回非null的那个子树的返回值。 在Main方法中,我们创建了一个二叉树,并测试了LowestCommonAncestor方法的几个不同输入。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值