Java Worker 设计模式

Worker模式

想解决的问题

异步执行一些任务,有返回或无返回结果

使用动机

有些时候想执行一些异步任务,如异步网络通信、daemon任务,但又不想去管理这任务的生命周。这个时候可以使用Worker模式,它会帮您管理与执行任务,并能非常方便地获取结果

结构

很多人可能为觉得这与executor很像,但executor是多线程的,它的作用更像是一个规划中心。而Worker则只是个搬运工,它自己本身只有一个线程的。每个worker有自己的任务处理逻辑,为了实现这个目的,有两种方式

1. 建立一个抽象的AbstractWorker,不同逻辑的worker对其进行不同的实现;
2. 对worker新增一个TaskProcessor不同的任务传入不同的processor即可。

第二种方式worker的角色可以很方便地改变,而且可以随时更换processor,可以理解成可”刷机”的worker    ^ ^。这里我们使用第二种方式来介绍此模式的整体结构。

针对上图,详细介绍一下几个角色:


  • ConfigurableWorker:顾名思义这个就是真正干活的worker了。要实现自我生命周期管理,需要实现Runable,这样其才能以单独的线程运行,需要注意的是work最好以daemon线程的方式运行。worker里面还包括几个其它成员:taskQueue,一个阻塞性质的queue,一般BlockingArrayList就可以了,这样任务是FIFO(先进先出)的,如果要考虑任务的优先级,则可以考虑使用PriorityBlockingQueue;listeners,根据事件进行划分的事件监听者,以便于当一个任务完成的时候进行处理,需要注意的是,为了较高效地进行listener遍历,这里我推荐使用CopyOnWriteArrayList,免得每次都复制。其对应的方法有addlistener、addTask等配套方法,这个都不多说了,更详细的可以看后面的示例代码。
  • WorkerTask:实际上这是一个抽象的工内容,其包括基本的id与,task的ID是Worker生成的,相当于递wtte后的一个执回,当数据执行完了的时候需要使用这个id来取结果。而后面真正实现的实体task则包含任务处理时需要的数据。
  • Processor:为了实现可”刷机”的worker,我们将处理逻辑与worker分开来,processor的本职工作很简单,只需要加工传入的task数据即可,加工完成后触发fireEvent(WorkerEvent.TASK_COMPLETE)事件,之后通过Future的get即可得到最终的数据。

另外再说一点,对于addTask,可以有一个overload的方法,即在输入task的同时,传入一个RejectPolice,这样可以在size过大的时候做出拒绝操作,有效避免被撑死。

适用性/问题

这种设计能自动处理任务,并能根据任务的优先级自动调节任务的执行顺序,一个完全独立的thread,你完全可以将其理解成一专门负责干某种活的”机器人”。它可以用于处理一些定时、请求量固定均匀且对实时性要求不是太高的任务,如日志记录,数据分析等。当然,如果想提高任务处理的数据,可以生成多个worker,就相当于雇佣更多的人来为你干活,非常直观的。当然这样一来,谁来维护这worker便成了一个问题,另外就目前这种设计下worker之间是没有通信与协同的,这些都是改进点。


那么对于多个worker,有什么组织方式呢?这里我介绍三种,算是抛砖引玉:

流水线式worker(assembly-line worker)

就像生产车间上的流水线工人一样,将任务切分成几个小块,每个worker负责自己的一部分,以提高整体的生产、产出效率,如下图:




假设完成任务 t 需要的时间为:W(t)=n,那么将任务分解成m份,流水线式的执行,每小份需要的时间便为 W(t/m)=n/m,那么执行1000条任务的时间,单个为1000n,流水线长度为L,则用这种方式所用的时间为(1000-1)*(m-L+1)*n/m+n 其中L<m,由此可见,流水线的worker越多、任务越细分,工作的效率将越高。这种主方式的问题在于,如果一个worker出现问题,那么整个流水线就将停止工作。而且任务的优先级不能动态调用,必须事先告知。


多级反馈队列(Multilevel Feedback Queue)

这是一个有Q1、Q2...Qn个多重流水线方式,从高到低分别代码不同的优先级,高优先级的worker要多于低优先级的,一般是2的倍数,即Q4有16个worker、Q3有8个,后面类推。任务根据预先估计好的优先级进入,如果任务在某步的执行过长,直接踢到下一级,让出最快的资源。如下图所示:


显然这种方式的好处就在于可以动态地调整任务的优级,及时做出反应。当然,为了实现更好的高度,我们可以在低级里增加一个阀值,使得放偶然放入低级的task可以有复活的机会^ ^。


MapReduce式

流水线虽然有一定的并行性,但总体来说仍然是串行的,因为只要有一个节点出了问题,那都是致命的错误。MapReduce是Google率先实现的一个分布式算法,有非常好的并行执行效率。


如上图所示,只要我们将Map与Reduce都改成Worker就行了,如MapWorker与ReduceWorker。这样,可以看见,Map的过程是完全并行的,当然这样就需要在Map与Reduce上的分配与数据组合上稍稍下一点功夫了。

样例实现

这里我们实现一个PageURLMiningWorker,对给定的URL,打开页面后,采取所有的URL,并反回结果进行汇总输出。由于时间有限,这里我只实现了单worker与MapReduce worker集两种方式,有兴趣的同学可以实现其它类型,如多级反馈队列。注意!我这里只是向大家展示这种设计模式,URL 抓取的效率不在本次考虑之列。

所有的代码可以在这里获取: https://github.com/sefler1987/javaworker

单Worker实现样例

package com.alibaba.taobao.main;

import java.util.Arrays;
import java.util.List;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentSkipListSet;
import java.util.concurrent.TimeUnit;

import com.alibaba.taobao.worker.ConfigurableWorker;
import com.alibaba.taobao.worker.SimpleURLComparator;
import com.alibaba.taobao.worker.WorkerEvent;
import com.alibaba.taobao.worker.WorkerListener;
import com.alibaba.taobao.worker.WorkerTask;
import com.alibaba.taobao.worker.linear.PageURLMiningProcessor;
import com.alibaba.taobao.worker.linear.PageURLMiningTask;

/**
 * Linear version of page URL mining. It's slow but simple.
 * Average time cost for 1000 URLs is: 3800ms
 *
 * @author xuanyin.zy E-mail:xuanyin.zy@taobao.com
 * @since Sep 16, 2012 5:35:40 PM
 */
public class LinearURLMiningMain implements WorkerListener {
    private static final String EMPTY_STRING = "";

    private static final int URL_SIZE_TO_MINE = 10000;

    private static ConcurrentHashMap<String, WorkerTask<?>> taskID2TaskMap = new ConcurrentHashMap<String, WorkerTask<?>>();

    private static ConcurrentSkipListSet<String> foundURLs = new ConcurrentSkipListSet<String>(new SimpleURLComparator());

    public static void main(String[] args) throws InterruptedException {
        long startTime = System.currentTimeMillis();

        ConfigurableWorker worker = new ConfigurableWorker("W001");
        worker.setTaskProcessor(new PageURLMiningProcessor());

        addTask2Worker(worker, new PageURLMiningTask("http://www.taobao.com"));
        addTask2Worker(worker, new PageURLMiningTask("http://www.xinhuanet.com"));
        addTask2Worker(worker, new PageURLMiningTask("http://www.zol.com.cn"));
        addTask2Worker(worker, new PageURLMiningTask("http://www.163.com"));

        LinearURLMiningMain mainListener = new LinearURLMiningMain();
        worker.addListener(mainListener);

        worker.start();

        String targetURL = EMPTY_STRING;
        while (foundURLs.size() < URL_SIZE_TO_MINE) {
            targetURL = foundURLs.pollFirst();

            if (targetURL == null) {
                TimeUnit.MILLISECONDS.sleep(50);
                continue;
            }

            PageURLMiningTask task = new PageURLMiningTask(targetURL);
            taskID2TaskMap.putIfAbsent(worker.addTask(task), task);

            TimeUnit.MILLISECONDS.sleep(100);
        }

        worker.stop();

        for (String string : foundURLs) {
            System.out.println(string);
        }

        System.out.println("Time Cost: " + (System.currentTimeMillis() - startTime) + "ms");
    }

    private static void addTask2Worker(ConfigurableWorker mapWorker_1, PageURLMiningTask task) {
        String taskID = mapWorker_1.addTask(task);
        taskID2TaskMap.put(taskID, task);
    }

    @Override
    public List<WorkerEvent> intrests() {
        return Arrays.asList(WorkerEvent.TASK_COMPLETE, WorkerEvent.TASK_FAILED);
    }

    @Override
    public void onEvent(WorkerEvent event, Object... args) {
        if (WorkerEvent.TASK_FAILED == event) {
            System.err.println("Error while extracting URLs");
            return;
        }

        if (WorkerEvent.TASK_COMPLETE != event)
            return;

        PageURLMiningTask task = (PageURLMiningTask) args[0];
        if (!taskID2TaskMap.containsKey(task.getTaskID()))
            return;

        foundURLs.addAll(task.getMinedURLs());

        System.out.println("Found URL size: " + foundURLs.size());

        taskID2TaskMap.remove(task.getTaskID());
    }
}



MapReduce实现样例

package com.alibaba.taobao.main;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentSkipListSet;
import java.util.concurrent.TimeUnit;

import com.alibaba.taobao.worker.ConfigurableWorker;
import com.alibaba.taobao.worker.SimpleURLComparator;
import com.alibaba.taobao.worker.WorkerEvent;
import com.alibaba.taobao.worker.WorkerListener;
import com.alibaba.taobao.worker.WorkerTask;
import com.alibaba.taobao.worker.mapreduce.Map2ReduceConnector;
import com.alibaba.taobao.worker.mapreduce.MapReducePageURLMiningTask;
import com.alibaba.taobao.worker.mapreduce.PageContentFetchProcessor;
import com.alibaba.taobao.worker.mapreduce.URLMatchingProcessor;

/**
 * MapReduce version of page URL mining. It's very powerful.
 *
 * @author xuanyin.zy E-mail:xuanyin.zy@taobao.com
 * @since Sep 16, 2012 5:35:40 PM
 */
public class MapReduceURLMiningMain implements WorkerListener {
    private static final String EMPTY_STRING = "";

    private static final int URL_SIZE_TO_MINE = 10000;

    private static ConcurrentHashMap<String, WorkerTask<?>> taskID2TaskMap = new ConcurrentHashMap<String, WorkerTask<?>>();

    private static ConcurrentSkipListSet<String> foundURLs = new ConcurrentSkipListSet<String>(new SimpleURLComparator());

    public static void main(String[] args) throws InterruptedException {
        long startTime = System.currentTimeMillis();

        // four mapers
        List<ConfigurableWorker> mappers = new ArrayList<ConfigurableWorker>(4);

        ConfigurableWorker mapWorker_1 = new ConfigurableWorker("W_M1");
        ConfigurableWorker mapWorker_2 = new ConfigurableWorker("W_M2");
        ConfigurableWorker mapWorker_3 = new ConfigurableWorker("W_M3");
        ConfigurableWorker mapWorker_4 = new ConfigurableWorker("W_M4");
        mapWorker_1.setTaskProcessor(new PageContentFetchProcessor());
        mapWorker_2.setTaskProcessor(new PageContentFetchProcessor());
        mapWorker_3.setTaskProcessor(new PageContentFetchProcessor());
        mapWorker_4.setTaskProcessor(new PageContentFetchProcessor());

        mappers.add(mapWorker_1);
        mappers.add(mapWorker_2);
        mappers.add(mapWorker_3);
        mappers.add(mapWorker_4);

        // one reducer
        ConfigurableWorker reduceWorker_1 = new ConfigurableWorker("W_R1");
        reduceWorker_1.setTaskProcessor(new URLMatchingProcessor());

        // bind reducer to final result class
        MapReduceURLMiningMain main = new MapReduceURLMiningMain();
        reduceWorker_1.addListener(main);

        // initiate tasks
        addTask2Worker(mapWorker_1, new MapReducePageURLMiningTask("http://www.taobao.com"));
        addTask2Worker(mapWorker_2, new MapReducePageURLMiningTask("http://www.xinhuanet.com"));
        addTask2Worker(mapWorker_3, new MapReducePageURLMiningTask("http://www.zol.com.cn"));
        addTask2Worker(mapWorker_4, new MapReducePageURLMiningTask("http://www.sina.com.cn/"));

        // bind mapper to reduer
        Map2ReduceConnector connector = new Map2ReduceConnector(Arrays.asList(reduceWorker_1));
        mapWorker_1.addListener(connector);
        mapWorker_2.addListener(connector);
        mapWorker_3.addListener(connector);
        mapWorker_4.addListener(connector);

        // start all
        mapWorker_1.start();
        mapWorker_2.start();
        mapWorker_3.start();
        mapWorker_4.start();
        reduceWorker_1.start();

        String targetURL = EMPTY_STRING;
        int lastIndex = 0;
        while (foundURLs.size() < URL_SIZE_TO_MINE) {
            targetURL = foundURLs.pollFirst();

            if (targetURL == null) {
                TimeUnit.MILLISECONDS.sleep(50);
                continue;
            }

            lastIndex = ++lastIndex % mappers.size();
            MapReducePageURLMiningTask task = new MapReducePageURLMiningTask(targetURL);
            taskID2TaskMap.putIfAbsent(mappers.get(lastIndex).addTask(task), task);

            TimeUnit.MILLISECONDS.sleep(100);
        }

        // stop all
        mapWorker_1.stop();
        mapWorker_2.stop();
        mapWorker_3.stop();
        mapWorker_4.stop();
        reduceWorker_1.stop();

        for (String string : foundURLs) {
            System.out.println(string);
        }

        System.out.println("Time Cost: " + (System.currentTimeMillis() - startTime) + "ms");
    }

    private static void addTask2Worker(ConfigurableWorker mapWorker_1, MapReducePageURLMiningTask task) {
        String taskID = mapWorker_1.addTask(task);
        taskID2TaskMap.put(taskID, task);
    }

    @Override
    public List<WorkerEvent> intrests() {
        return Arrays.asList(WorkerEvent.TASK_COMPLETE, WorkerEvent.TASK_FAILED);
    }

    @Override
    public void onEvent(WorkerEvent event, Object... args) {
        if (WorkerEvent.TASK_FAILED == event) {
            System.err.println("Error while extracting URLs");
            return;
        }

        if (WorkerEvent.TASK_COMPLETE != event)
            return;

        MapReducePageURLMiningTask task = (MapReducePageURLMiningTask) args[0];
        if (!taskID2TaskMap.containsKey(task.getTaskID()))
            return;

        foundURLs.addAll(task.getMinedURLs());

        System.out.println("Found URL size: " + foundURLs.size());

        taskID2TaskMap.remove(task.getTaskID());
    }
}



结果对比

Y轴为抓取X轴URL个数所用的时间

总结

我们可以看到,worker模式组合是非常灵活的,它真的就像一个活生生的工人,任你调配。使用worker,我们可以更方便地实现更复杂的结构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值