昆虫繁殖问题
1.问题描述
【题目描述】
科学家在热带森林中发现了一种特殊的昆虫,这种昆虫的繁殖能力很强。每对成虫过x个月产y对卵,每对卵要过两个月长成成虫。假设每个成虫不死,第一个月只有一对成虫,且卵长成成虫后的第一个月不产卵(过x个月产卵),问过z个月以后,共有成虫多少对?
0≤x≤20,1≤y≤20,X≤z≤50。
【输入】
x,y,z的数值。
【输出】
过z个月以后,共有成虫对数。
【输入样例】
1 2 8
【输出样例】
37
2.问题分析
递推关系
本月的成虫数量可以分解成:上月的成虫数量+本月新成虫数量。若用数组a[i]定义位第i月的成虫数量,上月成虫部分很简单,就是上月成虫数量 a[i-1]。本月新成虫需要分析与当月成虫数量挂钩的产卵数量。成虫每过x个月到产卵,从虫卵到成虫需要2个月,那么本月新成虫由前 (x+2) 个月的成虫产卵而来。由此得到递推关系: a[i] = a[i-1] + a[i-x-2] * y
初始化
由题意知,第一个月只有一对成虫,之后的(x+1)个月都没有新的成虫,则前(x+2)个月都只有一对成虫。
3.题解
#include<stdio.h>
#include<stdlib.h>
// 需要定义long long类型
#define ll long long
ll a[55];
int main(void)
{
int x,y,z;
scanf("%d %d %d",&x,&y,&z);
for(int i=1;i<=x+2;i++)
a[i]=1;
for(int i=x+3;i<=z+1;i++) // 注意是经过z个月之后
a[i]=a[i-1]+a[i-x-2]*y;
printf("%ld\n",a[z+1]);
return 0;
}