Problem Description
After coding so many days,Mr Acmer wants to have a good rest.So travelling is the best choice!He has decided to visit n cities(he insists on seeing all the cities!And he does not mind which city being his start station because superman can bring him to any city at first but only once.), and of course there are m roads here,following a fee as usual.But Mr Acmer gets bored so easily that he doesn't want to visit a city more than twice!And he is so mean that he wants to minimize the total fee!He is lazy you see.So he turns to you for help.
Input
There are several test cases,the first line is two intergers n(1<=n<=10) and m,which means he needs to visit n cities and there are m roads he can choose,then m lines follow,each line will include three intergers a,b and c(1<=a,b<=n),means there is a road between a and b and the cost is of course c.Input to the End Of File.
Output
Output the minimum fee that he should pay,or -1 if he can't find such a route.
Sample Input
2 1 1 2 100 3 2 1 2 40 2 3 50 3 3 1 2 3 1 3 4 2 3 10
Sample Output
100 90 7
Source
Recommend
gaojie
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
三进制状压DP~
和上一道差不多~还是旅行商问题,只不过每个点可以走两次~
注意这题不能floyd……为什么啊……
#include<cstdio>
#include<iostream>
using namespace std;
#define inf 999999999
int n,m,x,y,v,dis[11][11],f[60000][11],mi[11],tot,ans,num[60000][11];
bool flag;
int main()
{
mi[0]=1;for(int i=1;i<=10;i++) mi[i]=mi[i-1]*3;
for(int i=1;i<mi[10];i++)
{
int now=i,id=0;
while(now)
{
num[i][id++]=now%3;
now/=3;
}
}
while(scanf("%d%d",&n,&m)!=EOF)
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++) dis[i][j]=inf;
while(m--) scanf("%d%d%d",&x,&y,&v),dis[x][y]=dis[y][x]=min(dis[x][y],v);
ans=inf;
for(int i=0;i<mi[n];i++)
for(int j=1;j<=n;j++) f[i][j]=inf;
for(int i=1;i<=n;i++) f[mi[i-1]][i]=0;
for(int k=1;k<mi[n];k++)
{
flag=1;
for(int i=1;i<=n;i++)
if(num[k][i-1])
{
if(f[k][i]==inf) continue;
for(int j=1;j<=n;j++)
if(num[k][j-1]!=2 && dis[j][i]!=inf) f[k+mi[j-1]][j]=min(f[k+mi[j-1]][j],f[k][i]+dis[i][j]);
}
else flag=0;
if(flag) for(int i=1;i<=n;i++) ans=min(ans,f[k][i]);
}
if(ans==inf) printf("-1\n");
else printf("%d\n",ans);
}
return 0;
}