UVA 10635 - Prince and Princess ( LCS 转换为LIS )

本文介绍了一种高效的方法来解决给定两个数组时找到最长公共子序列的问题。通过将数组A中的元素重新编号,并将B数组进行相同映射,问题转化为求解B数组的最长递增子序列(LIS)。这种方法利用了排序和二分查找的技巧,可以在O(nlogn)的时间复杂度内解决。此外,文章还提供了两种不同的求解LIS的方法。
摘要由CSDN通过智能技术生成

题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1576

题        意:给你两个数组,找出最长公共子序列。

思        路:由于数组太大,所以不可以用常规方法。因此有个巧妙的转换,把A中的元素重新按1~p+1编号,

                   同时B也相同的映射编号,由于A为递增序列,所以LCS就是B中最长递增子序列,即LIS.这样就

                   转换成求B的LIS问题,可以在O(nlogn)的时间内解决。

代码如下:

#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <climits>
using namespace std;
#define maxn 62505
int s[maxn], g[maxn], d[maxn], vis[maxn];
int main()
{
    int T;
    scanf ( "%d", &T );
    int cas=1;
    while( T-- )
    {
        int p, q, n, x;
        memset( vis, 0, sizeof(vis) );
        scanf ( "%d %d %d", &n, &p, &q );
        for( int i = 1; i <= p+1; i ++ )
        {
            scanf ( "%d", &x );
            vis[x] = i;
        }
        int j = 0;
        for( int i = 1; i <= q+1; i ++ )
        {
            scanf ( "%d", &x );
            if( vis[x] ) s[j++] = vis[x];
        }
        for( int i = 1; i <= j; i ++ )
            g[i] = INT_MAX;
        for( int i = 0; i < j; i ++ )
        {
            * (lower_bound( g+1, g+j+1, s[i] ))= s[i];
        }
        printf("Case %d: %d\n",cas++,lower_bound( g+1, g+j+1, INT_MAX ) - g - 1 );
    }
    return 0;
}

               也可以用另一种方法求LIS;

代码如下:

#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <climits>
using namespace std;
#define maxn 62505
int s[maxn], g[maxn], d[maxn], vis[maxn];
int main()
{
    int T;
    scanf ( "%d", &T );
    int cas=1;
    while( T-- )
    {
        int p, q, n, x;
        memset( vis, 0, sizeof(vis) );
        scanf ( "%d %d %d", &n, &p, &q );
        for( int i = 1; i <= p+1; i ++ )
        {
            scanf ( "%d", &x );
            vis[x] = i;
        }
        int j = 0;
        for( int i = 1; i <= q+1; i ++ )
        {
            scanf ( "%d", &x );
            if( vis[x] ) s[j++] = vis[x];
        }
        int ans = 0;
        for( int i = 1; i <= j; i ++ )
            g[i] = INT_MAX;
        for( int i = 0; i < j; i ++ )
        {
            int k = lower_bound( g, g+j+1, s[i] ) - g;
            d[i] = k;
            g[k] = s[i];
            ans = max( ans, d[i] );
        }
        printf("Case %d: %d\n",cas++,ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值