POJ 2773 Happy 2006 (容斥)

题目链接:http://poj.org/problem?id=2773

题        意:给你m,k;找出第k个与m互素的数时多少。

思        路:二分加容斥,二分枚举[1,2^64]范围内所有的数x,找到1到x范围内与m不互素的数的个数y(用容斥原理)。然后用x - y,如果等于k就是结果。

                   对于就1到mid中有多少个与m互素的数需要用到容斥原理:


                           比如假设m=12;mid=13  而 12=2*2*3

                           那么1到mid中与m不互质的数就有2,3,4,6,8,9,10,12,

                           其实就是2的所有倍数,以及3的所有倍数


                     这样我们就 算出与1到13中与12不互素的个数为: 13/2+13/3-13/(2*3)=8;

                     互素的数就位13-8=5;


                     所以与m不互素的数其实对m进行因式分解,然后用容斥原理计算就可以了。。。

代码如下:

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <deque>
#include <stdlib.h>
#include <algorithm>
using namespace std;
#define maxn 1000010
int prime[33];
void init( int m )//列举m的所有素因子(即对m进行素因子分解。prime记录因子个数)
{
    int j = 1;
    for( int i = 2; i*i <= m; i ++ )
        if( m%i == 0 )
        {
            prime[j++] = i;
            while( m%i == 0 ) {m/=i;}
        }
    if( m != 1 ) prime[j++]=m;
    prime[0]=j-1;//记录元素个数
}
int que[1<<10];
int coun( int n, int m )//计算[1,n]内与m互素的数的个数---容斥定理模板
{
    int g = 0, sum = n;
    que[++g]=1;
    for( int i = 1; i <= prime[0]; i ++ )
    {
        int t = g;
        for( int j = 1; j <= g; j ++ ){
            que[++t] = que[j] * prime[i] * (-1);//减去不互素的数需乘以(-1)
            sum += n/que[t];
        }
        g=t;
    }
    return sum;
}
int main()
{
    int k, m;
    while( scanf ( "%d %d", &m, &k ) != EOF )
    {
        init(m);
        int l = 1, r = 2000000000, mid;//二分枚举
        while( l <= r )
        {
            mid = (l+r)/2;
            if( coun(mid,m)>=k) r = mid-1;
            else l = mid+1;
        }
        printf("%d\n",l);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值