题目链接:http://poj.org/problem?id=2773
题 意:给你m,k;找出第k个与m互素的数时多少。
思 路:二分加容斥,二分枚举[1,2^64]范围内所有的数x,找到1到x范围内与m不互素的数的个数y(用容斥原理)。然后用x - y,如果等于k就是结果。
对于就1到mid中有多少个与m互素的数需要用到容斥原理:
比如假设m=12;mid=13 而 12=2*2*3
那么1到mid中与m不互质的数就有2,3,4,6,8,9,10,12,
其实就是2的所有倍数,以及3的所有倍数
这样我们就 算出与1到13中与12不互素的个数为: 13/2+13/3-13/(2*3)=8;
互素的数就位13-8=5;
所以与m不互素的数其实对m进行因式分解,然后用容斥原理计算就可以了。。。
代码如下:
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <deque>
#include <stdlib.h>
#include <algorithm>
using namespace std;
#define maxn 1000010
int prime[33];
void init( int m )//列举m的所有素因子(即对m进行素因子分解。prime记录因子个数)
{
int j = 1;
for( int i = 2; i*i <= m; i ++ )
if( m%i == 0 )
{
prime[j++] = i;
while( m%i == 0 ) {m/=i;}
}
if( m != 1 ) prime[j++]=m;
prime[0]=j-1;//记录元素个数
}
int que[1<<10];
int coun( int n, int m )//计算[1,n]内与m互素的数的个数---容斥定理模板
{
int g = 0, sum = n;
que[++g]=1;
for( int i = 1; i <= prime[0]; i ++ )
{
int t = g;
for( int j = 1; j <= g; j ++ ){
que[++t] = que[j] * prime[i] * (-1);//减去不互素的数需乘以(-1)
sum += n/que[t];
}
g=t;
}
return sum;
}
int main()
{
int k, m;
while( scanf ( "%d %d", &m, &k ) != EOF )
{
init(m);
int l = 1, r = 2000000000, mid;//二分枚举
while( l <= r )
{
mid = (l+r)/2;
if( coun(mid,m)>=k) r = mid-1;
else l = mid+1;
}
printf("%d\n",l);
}
return 0;
}