数字图像处理---高斯模糊详解

本文详细介绍了高斯模糊在数字图像处理中的作用,解释了高斯滤波器作为低通滤波器如何对图像进行模糊处理。讨论了一维和二维高斯分布的公式,并提供了C语言实现高斯模板的示例。文章还探讨了模板大小与标准差σ的关系,以及在不同图像分辨率下如何选择合适的模板和σ值。最后,展示了3*3和5*5模板作为高斯曲面近似的应用,并给出了MATLAB实现高斯模糊的图像处理结果。
摘要由CSDN通过智能技术生成

高斯滤波实际上是一种低通滤波器,也就是说,低波通过,高波滤去。对于图像来讲,就是在低频的部分通过,对于高频的地方滤去。对图像的边缘等细节部分进行模糊,这是由高斯模糊的公式的性质决定的。这点,经常在数字图像处理中利用,以在图像仿真图像重打样等领域进行利用。

那么,首先我们看公式。

这里写图片描述

σ是标准差,在这里又叫做高斯半径。σ2表示的意思就是方差。f(x)是概率,μ是均值,即期望。即这个公式表示的意思在μ附近的概率。离μ越近,即σ越小,其概率越大;离μ越远,即σ越大,其概率越小。σ的取值范围是[0.1~250]。

这里写图片描述

这个是高中学的部分,也就是一维正态分布,所以不做多的解释。

然后,是二维高斯曲面。

首先还是公式(x,y代表像素的模板坐标,模板中心位置为原点):

这里写图片描述

根据这个公式,我们可以计算得到不同σ的高斯模板。下面是C语言程序实现:

当σ即半径为0.7时:

#include "stdafx.h&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值