NYOJ - 最大和(DP)

最大和

时间限制: 1000 ms  |           内存限制: 65535 KB
难度: 5
描述

给定一个由整数组成二维矩阵(r*c),现在需要找出它的一个子矩阵,使得这个子矩阵内的所有元素之和最大,并把这个子矩阵称为最大子矩阵。
例子:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
其最大子矩阵为:

9 2
-4 1
-1 8
其元素总和为15。

输入
第一行输入一个整数n(0<n<=100),表示有n组测试数据;
每组测试数据:
第一行有两个的整数r,c(0<r,c<=100),r、c分别代表矩阵的行和列;
随后有r行,每行有c个整数;
输出
输出矩阵的最大子矩阵的元素之和。
样例输入
1
4 4
0 -2 -7 0 
9 2 -6 2 
-4 1 -4 1 
-1 8 0 -2 
样例输出
15
#include <stdio.h>
#include <string.h> 

int ans[101][101];
int dp[101];

int max_sum(int n)
{
	int i,s = 0,max = dp[0];
	for(i = 0; i < n; i++)
	{
		if(s > 0)
		s += dp[i];
		else
		s = dp[i];
		if(s > max)
		max = s;
	}
	return max;
}
int main(void)
{
	int n,r,c,i,j,k,max,s;
	scanf("%d",&n);
	while(n--)
	{
		scanf("%d%d",&r,&c);
		for(i = 0; i < r; i++)
		{
			for(j = 0; j < c; j++)
			{
				scanf("%d",&ans[i][j]);
			}
		}
		max = -100000000;
		for(i = 0; i < r; i++)
		{
			memset(dp,0,sizeof(dp));
			for(j = i; j < r; j++)
			{
				for(k = 0; k < c; k++)
				{
					dp[k] += ans[j][k];
				}
				s = max_sum(k);
				if(max < s)
				max = s;
			}
		}
		printf("%d\n",max);
	}
	return 0;
}

这个也是经典的DP问题,因为,这个题目可以转化为求出一组序列的连续子串最大和问题,如何求出矩阵中最大和子矩阵,我们这里可以将二维的矩阵压缩成一维,当矩阵被压缩成一维之后,那么,这个问题就转化为连续子串最大和问题,所以,这个问题也就解决了。这题已经AC,这里提供参考。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值