NYOJ - 矩形嵌套(经典dp)

矩形嵌套

时间限制:3000 ms  |           内存限制:65535 KB
难度:4
描述
有n个矩形,每个矩形可以用a,b来描述,表示长和宽。矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度)。例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中。你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内。
输入
第一行是一个正正数N(0<N<10),表示测试数据组数,
每组测试数据的第一行是一个正正数n,表示该组测试数据中含有矩形的个数(n<=1000)
随后的n行,每行有两个数a,b(0<a,b<100),表示矩形的长和宽
输出
每组测试数据都输出一个数,表示最多符合条件的矩形数目,每组输出占一行
样例输入
1
10
1 2
2 4
5 8
6 10
7 9
3 1
5 8
12 10
9 7
2 2
样例输出
5
#include <stdio.h>
#include <string.h>
#include <algorithm>

using namespace std;

struct ans{
	int x;
	int y;
};
struct ans a[1001];
int dp[1001];

bool cmp(struct ans a,struct ans b)
{
	if(a.x <= b.x) return 1;
	else if(a.x == b.x && a.y < b.y)
	return 1;
	else return 0;
}

bool max(struct ans m,struct ans n)
{
	if(m.x < n.x && m.y < n.y) return 1;
	else return 0;
}

int main()
{
	int n,m,i,j,k;
	scanf("%d",&n);
	while(n--)
	{
		scanf("%d",&m);
		for(i = 0; i < m; i++)
		{
			scanf("%d%d",&a[i].x,&a[i].y);
			if(a[i].x > a[i].y)
			{
				int tmp = a[i].x;
				a[i].x = a[i].y;
				a[i].y = tmp;
			}
		}
		sort(a,a+m,cmp);
		memset(dp,0,sizeof(dp));
		for(i = 1; i < m; i++)
		{
			for(j = 0; j <= i; j++)
			{
				if(max(a[j],a[i])&&dp[i] < dp[j] + 1)
				{
					dp[i] = dp[j] + 1;
				}
			}
		}
		int max = dp[0];
		for(i = 0; i < m; i++)
		{
			if(max < dp[i])
			max = dp[i];
		}
		printf("%d\n",max+1);
	}
	return 0;
}

这个是经典的DP问题,这里注意分为两个步骤来解决,将数据排序,得到一个递增的序列,第二步,将这个问题转化为最长单调递增子序列问题,通过上面的两步,问题也就解决了,这题已经AC,这里提供参考。

阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页