1 冒泡排序
冒泡排序(Bubble Sorting)的基本思想是:通过对待排序序列从前向后(从下标较小的元素开始),依次比较
相邻元素的值,若发现逆序则交换,使值较大的元素逐渐从前移向后部,就象水底下的气泡一样逐渐向上冒。
优化:
因为排序的过程中,各元素不断接近自己的位置,如果一趟比较下来没有进行过交换,就说明序列有序,因此要在
排序过程中设置一个标志flag 判断元素是否进行过交换。从而减少不必要的比较。(这里说的优化,可以在冒泡排
序写好后,在进行)
public static void bubbleSort(int[] arr) {
int temp = 0;
boolean flag = false; //标识变量,表示是否进行过交换
for (int i = 0; i < arr.length - 1; i++) {
for (int j = 0; j < arr.length - 1 - i; j++) {
if (arr[j] > arr[j + 1]) {
flag = true;
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
if (!flag) { //在一趟排序中,一次交换都没有发生过
break;
} else {
flag = false; //重置flag,进行下次判断
}
}
}
2 选择排序
public static void selectSort(int[] arr){
for (int i = 0; i < arr.length - 1; i++) {
int minIndex = i;
int minVal = arr[minIndex];
for (int j = i+1; j < arr.length; j++) {
if(minVal > arr[j]){
minVal = arr[j];
minIndex = j;
}
}
if(minIndex != i){
arr[minIndex] = arr[i];
arr[i] = minVal;
}
}
}
3 插入排序
public static void insertSort(int[] nums) {
int insertVal = 0;
int insertIndex = 0; //当前要插入的元素下标
for (int i = 1; i < nums.length; i++) {
insertVal = nums[i];
insertIndex = i;
while (insertIndex - 1 >= 0 && insertVal < nums[insertIndex - 1]) {
nums[insertIndex] = nums[insertIndex-1];
insertIndex--;
}
if (insertIndex !=i){
nums[insertIndex] = insertVal;
}
}
}
4 希尔排序
希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含
的关键词越来越多,当增量减至1 时,整个文件恰被分成一组,算法便终止
public static void shellSort(int[] arr) {
int temp = 0;
int count = 0;
for (int gap = arr.length / 2; gap > 0; gap /= 2) {
for (int i = gap; i < arr.length; i++) {
// 遍历各组中所有的元素(共gap 组,每组有个元素), 步长gap
for (int j = i - gap; j >= 0; j -= gap) {
// 如果当前元素大于加上步长后的那个元素,说明交换
if (arr[j] > arr[j + gap]) {
temp = arr[j];
arr[j] = arr[j + gap];
arr[j + gap] = temp;
}
}
}
System.out.println("希尔排序第" + (++count) + "轮=" + Arrays.toString(arr));
}
}
//对交换式的希尔排序进行优化->移位法
public static void shellSort3(int[] arr) {
int count = 0;
int insertVal = 0, insertIndex = 0;
for (int gap = arr.length / 2; gap > 0; gap /= 2) {
for (int i = gap; i < arr.length; i++) {
insertIndex = i;
insertVal = arr[i];
while (insertIndex - gap >= 0 && insertVal < arr[insertIndex - gap]) {
arr[insertIndex] = arr[insertIndex - gap];
insertIndex -= gap;
}
arr[insertIndex] = insertVal;
}
System.out.println("希尔排序第" + (++count) + "轮=" + Arrays.toString(arr));
}
}
5 快速排序
public static void quickSort(int[] arr, int low, int high) {
if (low < high) {
int index = getIndex(arr, low, high);
quickSort(arr, low, index - 1);
quickSort(arr, index + 1, high);
}
}
public static int getIndex(int[] arr, int low, int high) {
//基准数据
int temp = arr[low];
while (low < high) {
while (low < high && arr[high] >= temp) {
high--;
}
arr[low] = arr[high];
while (low < high && arr[low] <= temp) {
low++;
}
arr[high] = arr[low];
}
arr[low] = temp;
return low;
}
6 归并排序
public static void mergeSort(int[] arr, int low, int high, int[] temp) {
if (low < high){
int mid = (low+high)/2;
//对左边序列进行归并排序
mergeSort(arr,low,mid,temp);
//对右边序列进行归并排序
mergeSort(arr,mid+1,high,temp);
//合并两个有序序列
merge(arr,low,mid,high,temp);
}
}
public static void merge(int[] arr, int low, int mid, int high, int[] temp) {
//初始化i,左边有序序列的初始索引
int i = low;
//初始化j,右边有序序列的初始索引
int j = mid + 1;
//指向temp数组的当前索引
int t = 0;
//先把左右两边(有序)的数据按照规则填充到temp 数组,直到左右两边的有序序列,有一边处理完毕为止
while (i <= mid && j <= high) {
if (arr[i] < arr[j]) {
temp[t++] = arr[i++];
} else {
temp[t++] = arr[j++];
}
}
//把有剩余数据的一边的数据依次全部填充到temp
while (i <= mid) {
temp[t++] = arr[i++];
}
//把有剩余数据的一边的数据依次全部填充到temp
while (j <= high) {
temp[t++] = arr[j++];
}
//排好序后复制到原来数组的对应位置
for (int k = 0; k < t; k++) {
arr[low + k] = temp[k];
}
}
7 基数排序
public static void radixSort(int[] arr) {
//得到数组中最大的数的位数
int max = arr[0];
for (int i = 0; i < arr.length; i++) {
if (arr[i] > max) {
max = arr[i];
}
}
//得到最大数是几位数
int maxLength = (max + "").length();
/*
定义一个二维数组,表示10个桶,每个桶j就是一个一维数组
说明:1.二维数组包含10个一维数组
2.为了防止放入数的时候,数据溢出,每一个一维数组大小定位 arr.length
3.基数排序是使用空间换时间的经典算法
*/
int[][] bucket = new int[10][arr.length];
/*
为了记录每个桶中,实际存放了多少个数据,我们定义一个一维数组来记录各个桶的每次放入的数据个数
比如:bucketElementCounts[0] , 记录的就是bucket[0] 桶的放入数据个数
*/
int[] bucketElementCounts = new int[10];
for (int i = 0, n = 1; i < maxLength; i++, n *= 10) {
//针对每个元素对应的位进行排序处理,第一次是个位,第二次是十位......
for (int j = 0; j < arr.length; j++) {
//取出每个元素的对应位的值
int digitOfElement = arr[j] / n % 10;
//放入到对应的桶中
bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
bucketElementCounts[digitOfElement]++;
}
//按照这个桶的顺序(一维数组下表依次取出数据,放入原来数组)
int index = 0;
//遍历每一个桶,并将桶中数据放入到原数组
for (int k = 0; k < bucketElementCounts.length; k++) {
//如果桶中有数据,才将其放入原数组
if (bucketElementCounts[k] != 0) {
//循环该桶即第k个桶
for (int l = 0; l < bucketElementCounts[k]; l++) {
arr[index++] = bucket[k][l];
}
}
//第i+1轮处理后,需要将买每个 bucketElementCounts[k] = 0 !!!
bucketElementCounts[k] = 0;
}
System.out.println("第" + (i + 1) + "轮,排序处理后 arr = " + Arrays.toString(arr));
}
}
8 堆排序
/**
* 将一个数组(二叉树),调整成大顶堆
* 功能: 完成将以i对应的非叶子结点的树调整成大顶堆
* 举例int arr[] = {4, 6, 8, 5, 9}; => i = 1 => adjustHeap => 得到{4, 9, 8, 5, 6}
* 如果我们再次调用adjustHeap 传入的是i = 0 => 得到{4, 9, 8, 5, 6} => {9,6,8,5, 4}
*
* @param arr 待调整的数组
* @param i 非叶子节点在数组中的索引
* @param length 表示堆多少个元素进行调整,length是在逐渐减少
*/
public static void adjustHeap(int[] arr, int i, int length) {
int temp = arr[i];
for (int j = i * 2 + 1; j < length; j = j * 2 + 1) {
if (j + 1 < length && arr[j] < arr[j + 1]) {//左子节点<右子节点
j++; //j指向右子节点
}
if (arr[j] > temp) { //如果子节点大于父节点
arr[i] = arr[j]; //把较大的值赋给当前节点
i = j; //i指向j,继续循环比较
} else {
break;
}
}
//当for循环结束后,我们已经将以i为父节点的树的最大值,放在了最顶(局部)
arr[i] = temp; //将temp值放入到调整后的位置
}
public static void heapSort(int[] arr) {
int temp = 0;
for (int i = arr.length / 2 - 1; i >= 0; i--) {
//将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆
adjustHeap(arr, i, arr.length);
}
/*
将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端
重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
*/
for (int j = arr.length - 1; j > 0; j--) {
temp = arr[j];
arr[j] = arr[0];
arr[0]=temp;
adjustHeap(arr,0,j);
}
System.out.println("数组=" + Arrays.toString(arr));
}