原题链接:https://www.luogu.com.cn/problem/P1197
星球大战
题目描述
很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治着整个星系。
某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球。这些星球通过特殊的以太隧道互相直接或间接地连接。
但好景不长,很快帝国又重新造出了他的超级武器。凭借这超级武器的力量,帝国开始有计划地摧毁反抗军占领的星球。由于星球的不断被摧毁,两个星球之间的通讯通道也开始不可靠起来。
现在,反抗军首领交给你一个任务:给出原来两个星球之间的以太隧道连通情况以及帝国打击的星球顺序,以尽量快的速度求出每一次打击之后反抗军占据的星球的连通块的个数。(如果两个星球可以通过现存的以太通道直接或间接地连通,则这两个星球在同一个连通块中)。
输入格式
输入文件第一行包含两个整数, n , m n,m n,m,分别表示星球的数目和以太隧道的数目。星球用 0 ∼ n − 1 0 \sim n-1 0∼n−1的整数编号。
接下来的 m m m 行,每行包括两个整数 x , y x,y x,y,表示星球 x x x 和星球 y y y 之间有 “以太” 隧道,可以直接通讯。
接下来的一行为一个整数 k k k ,表示将遭受攻击的星球的数目。
接下来的 k k k 行,每行有一个整数,按照顺序列出了帝国军的攻击目标。这 k k k 个数互不相同,且都在 0 0 0 到 n − 1 n-1 n−1 的范围内。
输出格式
第一行是开始时星球的连通块个数。接下来的 k k k 行,每行一个整数,表示经过该次打击后现存星球的连通块个数。
输入输出样例
输入 #1
8 13
0 1
1 6
6 5
5 0
0 6
1 2
2 3
3 4
4 5
7 1
7 2
7 6
3 6
5
1
6
3
5
7
输出 #1
1
1
1
2
3
3
说明/提示
【数据范围】
对于 100 % 100\% 100% 的数据, 1 ≤ m ≤ 2 × 1 0 5 1\le m \le 2\times 10^5 1≤m≤2×105, 1 ≤ n ≤ 2 m 1\le n \le 2m 1≤n≤2m, x ≠ y x \neq y x=y。
[JSOI2008]
题解
正向摧毁星球时维护过于艰难(或许需要 L C T \mathcal{LCT} LCT?),不如离线反向生成星球做一个并查集。
每次添加星球时遍历所有与它连接且存在的星球,检查是否在一个连通块内,不在则连接并使连通块数量 − 1 -1 −1。
代码
退役老咸鱼含泪复习带路径压缩并查集,并因为数组开小了错失 1 A 1A 1A……
#include<bits/stdc++.h>
using namespace std;
const int M=4e5+5;
int n,m,k,que[M],dad[M],ans[M];
bool des[M];
vector<int>edg[M];
void in()
{
scanf("%d%d",&n,&m);
for(int i=1,a,b;i<=m;++i)
scanf("%d%d",&a,&b),edg[a].push_back(b),edg[b].push_back(a);
scanf("%d",&k);
for(int i=1;i<=k;++i)scanf("%d",&que[i]),des[que[i]]=1;
}
int root(int v)
{
int f=v;
for(;dad[f]!=f;f=dad[f]);
for(;dad[v]!=v;v=dad[v])dad[v]=f;
return f;
}
int add(int v)
{
des[v]=0;
int cot=0;
for(int i=edg[v].size()-1;i>=0;--i)
if(!des[edg[v][i]]&&root(edg[v][i])!=root(v))++cot,dad[root(edg[v][i])]=root(v);
return cot;
}
void ac()
{
for(int i=0;i<n;++i)dad[i]=i;
for(int i=0;i<n;++i)if(!des[i])
for(int j=edg[i].size()-1;j>=0;--j)
if(!des[edg[i][j]]&&root(i)!=root(edg[i][j]))dad[root(i)]=root(edg[i][j]);
for(int i=0;i<n;++i)if(!des[i]&&root(i)==i)++ans[k];
for(int i=k-1;i>=0;--i)
ans[i]=ans[i+1]-add(que[i+1])+1;
for(int i=0;i<=k;++i)printf("%d\n",ans[i]);
}
int main(){in(),ac();}