LaTeX常用符号与语法

符号篇

Logo

当然要先把LaTeX\LaTeXLogo\mathcal{Logo}记下来啊虽然不常用,源码:\LaTeX

运算符

二元运算符

中文名称 渲染前(源码) 渲染后
+ ++
- -
\times ×\times
\div ÷\div
点乘 \codt \cdot
\cap \cap
\cup \cup
属于 \in \in
加减 \mp ±\pm
减加 \pm \mp

大型运算符

注:一般情况下使用两个美元符号括起来,否则与大写希腊字母效果相同。

中文名称 渲染前(源码) 渲染后
求和 \sum_{i=1}^n i=1n\sum_{i=1}^n
求积 \prod_{i=1}^n i=1n\prod_{i=1}^n

关系符

注:如无特殊说明下面的关系符的否定形式都为肯定形式的源码前加上not

中文名称 渲染前(源码) 渲染后
小于 < &lt;&lt;
大于 > &gt;&gt;
等于 > &gt;&gt;
不等于 \neq 或 \not= \neq
约等于 \approx \approx
同余 \equiv \equiv
小于等于 \le 或 \leq \le
大于等于 \ge 或 \geq \ge
属于 \in \in
含于 \subseteq \subseteq
整除 \mid \mid

希腊字母

仅列举常用字母

小写字母

渲染前(源码) 渲染后
\alpha α\alpha
\beta β\beta
\gamma γ\gamma
\theta θ\theta
\pi π\pi
\varphi φ\varphi
\mu μ\mu
\sigma σ\sigma
\omega ω\omega

大写字母

大概就是小写形式源码的第一个字符大写

渲染前(源码) 渲染后
\Sigma Σ\Sigma
\Pi Π\Pi
\Delta Δ\Delta

点点一家

渲染前(源码) 渲染后
\cdot \cdot
\cdots \cdots
\vdots \vdots
\ddots \ddots
\ldots \ldots

空格一家

渲染前(源码) 渲染后
a\!b a&NegativeThinSpace;ba\!b
ab abab
a\,b a&ThinSpace;ba\,b
a\;b a&ThickSpace;ba\;b
a\ b a ba\ b
a\quad b aba\quad b
a\qquad b aba\qquad b

括号一家

中文名称 渲染前(源码) 渲染后
小括号 () ()()
中括号 [] [][]
大括号 \{\} {}\{\}
下取整 \lfloor\rfloor \lfloor\rfloor
上取整 \lceil\rceil \lceil\rceil

箭头一家

家族成员繁多,不便一一列举,但是箭头符号的名字很有规律,一般命名规则为方向+箭头种类:

渲染前(源码) 渲染后
\leftarrow 或 \gets \gets
\rightarrow 或 \to \to
\uparrow \uparrow

四个基本方向上下左右不多说,斜着的箭头的方向部分为\ne \se \nw \sw,为东北、东南、西北、西南简写:
栗子:\nearrow\nearrow

还有左右、上下两个方向的箭头:

渲染前(源码) 渲染后
\leftrightarrow \leftrightarrow
\updownarrow \updownarrow

上面的箭头只有一根线,可以通过大写第一个字母变成双线:

渲染前(源码) 渲染后
\Leftrightarrow \Leftrightarrow
\Uparrow \Uparrow

在前面加上longlong可以把箭头变长,仅适用于左右箭头,注意双线箭头大写字母的位置:

渲染前(源码) 渲染后
\longleftarrow \longleftarrow
\longleftrightarrow \longleftrightarrow
\Longleftrightarrow 或 \iff \Longleftrightarrow

还有只有一边的箭头,名字为harpoon+up/down,表示那一边的位置,这种箭头似乎不支持上面的buffbuff,但拥有左右双向箭头:

渲染前(源码) 渲染后
\leftharpoonup \leftharpoonup
\rightleftharpoons \rightleftharpoons

其他符号

中文名称 渲染前(源码) 渲染后
\circ \circ
无穷 \infty \infty
空集 \emptyset \emptyset
\sim \sim
\angle \angle
对数 \log log\log
下划线 \_ _\_
\mod x mod&ThinSpace;&ThinSpace;x\mod x
换行符 \\ 或 \newline \newline
因为 \because \because
所以 \therefore \therefore

语法篇

上/下标

源码(渲染前)

x_{1+2_i}^{999^2}

渲染后: x1+2i9992x_{1+2_i}^{999^2}

支持多重嵌套,当没有大括号时默认渲染后面第一个字符。

开根

大括号定界,基本用法如下:
\sqrt{x}x\to \sqrt{x}

可以在大括号前面添加方括号,方括号里为开根的次数:
\sqrt[5]{x}x5\sqrt[5]{x}

符号大小自动调整,支持嵌套,方括号与大括号内的内容无特殊限制。

特殊的,可以不显示上方的横线:
\surd{x}x\surd{x}

上/下划线

上划线:
\overline{a+b}a+b\to \overline{a+b}

下划线:
\underline{a+b}a+b\to \underline{a+b}

嵌套:
\overline{\underline{\sqrt{a+b}}}a+b\to \overline{\underline{\sqrt{a+b}}}

向量

直接定义,会有一个小箭头在大括号定界范围的中央:
\vec {abcdas}abcdas\to\vec {abcdas}

无大括号时默认渲染后面第一个字符:
\vec aa\to \vec a

可以使用在上方加箭头的语法来达到向量的效果:
\overrightarrow{a}a\to\overrightarrow{a}
\overleftarrow{ba}ba\to\overleftarrow{ba}

拓展用法,在下方加箭头:
\underleftarrow{Ab}Ab\to\underleftarrow{Ab}

分数

用法比较单一,可以放到其他与法的定界符里,大小自动调整,两个大括号定界分子分母:
\frac{x^8}{4132}x84132\to \frac{x^8}{4132}

组合数

用法与分数类似:
\binom{233}{x^2}(233x2)\to \binom{233}{x^2}

对齐

好多以前的公式环境在CSDNCSDN更新以后似乎渲染不了了,博主只能靠alignedaligned度日了,在多数LaTeX\LaTeX公式环境里,都是用&来对齐公式,每行的&从左到右依次对齐,&的个数不同会让对齐时公式块略有偏移,具体见下:

\begin{aligned}
 f(x) &= (x+a)(x+b) &(1)\\
 &= x^2 + (a+b)x + ab&&(2)\\
 &=x\times x + ax+bx+ab&(3)
\end{aligned}

f(x)=(x+a)(x+b)(1)=x2+(a+b)x+ab(2)=x×x+ax+bx+ab(3) \begin{aligned} f(x) &amp;= (x+a)(x+b) &amp;(1)\\ &amp;= x^2 + (a+b)x + ab&amp;&amp;(2)\\ &amp;=x\times x + ax+bx+ab&amp;(3) \end{aligned}

居中的话直接在两个$$之间写就好了,默认居中。

大括号表达式

前后加一行,中间在alignedaligned环境里写表达式,依然可以用&对齐表达式或者表达式的部分。

\left\{
\begin{aligned}
&a=b+c\\
&c=x
\end{aligned}
\right.

{a=b+cc=x \left\{ \begin{aligned} &amp;a=b+c\\ &amp;c=x \end{aligned} \right.

更多用法,将限制写在&&后面,用大括号定界,可以左对齐,只用单个&是右对齐:

左对齐:

f(T)=\left\{
\begin{aligned}
&\mu(1)&&{T\in P}\\
&\mu(i)&&{i\ mod\ p[j]=0}\\
&-f(i)+\mu(i)&&{i\ mod\ p[j]\ne 0}
\end{aligned}
\right.

f(T)={μ(1)TPμ(i)i mod p[j]=0f(i)+μ(i)i mod p[j]0 f(T)=\left\{ \begin{aligned} &amp;\mu(1)&amp;&amp;{T\in P}\\ &amp;\mu(i)&amp;&amp;{i\ mod\ p[j]=0}\\ &amp;-f(i)+\mu(i)&amp;&amp;{i\ mod\ p[j]\ne 0} \end{aligned} \right.

右对齐:

f(T)=\left\{
\begin{aligned}
&\mu(1)&{T\in P}\\
&\mu(i)&{i\ mod\ p[j]=0}\\
&-f(i)+\mu(i)&{i\ mod\ p[j]\ne 0}
\end{aligned}
\right.

f(T)={μ(1)TPμ(i)i mod p[j]=0f(i)+μ(i)i mod p[j]0 f(T)=\left\{ \begin{aligned} &amp;\mu(1)&amp;{T\in P}\\ &amp;\mu(i)&amp;{i\ mod\ p[j]=0}\\ &amp;-f(i)+\mu(i)&amp;{i\ mod\ p[j]\ne 0} \end{aligned} \right.

表格

咕咕咕。。。

发布了379 篇原创文章 · 获赞 407 · 访问量 6万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 精致技术 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览