原题链接:https://www.luogu.com.cn/problem/P1169
棋盘制作
题目描述
国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源于易经的思想,棋盘是一个 8 × 8 8 \times 8 8×8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。
而我们的主人公小Q,正是国际象棋的狂热爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定将棋盘扩大以适应他们的新规则。
小Q找到了一张由 N × M N \times M N×M个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种颜色之一。小Q想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。
不过小Q还没有决定是找一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。
于是小Q找到了即将参加全国信息学竞赛的你,你能帮助他么?
输入格式
包含两个整数 N N N和 M M M,分别表示矩形纸片的长和宽。接下来的 N N N行包含一个 N × M N \ \times M N ×M的 01 01 01矩阵,表示这张矩形纸片的颜色( 0 0 0表示白色, 1 1 1表示黑色)。
输出格式
包含两行,每行包含一个整数。第一行为可以找到的最大正方形棋盘的面积,第二行为可以找到的最大矩形棋盘的面积(注意正方形和矩形是可以相交或者包含的)。
输入输出样例
输入 #1
3 3
1 0 1
0 1 0
1 0 0
输出 #1
4
6
说明/提示
对于 20 % 20\% 20%的数据, N , M ≤ 80 N, M ≤ 80 N,M≤80
对于 40 % 40\% 40%的数据, N , M ≤ 400 N, M ≤ 400 N,M≤400
对于 100 % 100\% 100%的数据, N , M ≤ 2000 N, M ≤ 2000 N,M≤2000
题解
???我不是在做数据结构题单吗,悬线法乱入是什么鬼?
稍微魔改了一丶丶的悬线法 d p dp dp,总之还是先预处理向左、右、上三个方向延伸的长度。然后遍历所有节点,根据上面第一个节点的情况来更新自己节点的信息,顺便统计答案。
代码
#include<bits/stdc++.h>
using namespace std;
const int M=2005;
int n,m,sqr[M][M],le[M][M],ri[M][M],up[M][M],ans1,ans2;
void in()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i)for(int j=1;j<=m;++j)scanf("%d",&sqr[i][j]);
}
void ac()
{
for(int i=1;i<=n;++i)
{
for(int j=1;j<=m;++j)
le[i][j]=sqr[i][j]!=sqr[i][j-1]?le[i][j-1]+1:1,
up[i][j]=sqr[i][j]!=sqr[i-1][j]?up[i-1][j]+1:1;
for(int j=m;j;--j)
ri[i][j]=sqr[i][j]!=sqr[i][j+1]?ri[i][j+1]+1:1;
}
for(int i=1;i<=n;++i)for(int j=1;j<=m;++j)
{
if(i>1&&sqr[i][j]!=sqr[i-1][j])
le[i][j]=min(le[i][j],le[i-1][j]),ri[i][j]=min(ri[i][j],ri[i-1][j]);
ans1=max(ans1,min(le[i][j]+ri[i][j]-1,up[i][j])*min(le[i][j]+ri[i][j]-1,up[i][j]));
ans2=max(ans2,(le[i][j]+ri[i][j]-1)*up[i][j]);
}
printf("%d\n%d\n",ans1,ans2);
}
int main()
{
in(),ac();
system("pause");
}