[NeetCode 150] Longest Common Subsequence

Longest Common Subsequence

Given two strings text1 and text2, return the length of the longest common subsequence between the two strings if one exists, otherwise return 0.

A subsequence is a sequence that can be derived from the given sequence by deleting some or no elements without changing the relative order of the remaining characters.

For example, “cat” is a subsequence of “crabt”.
A common subsequence of two strings is a subsequence that exists in both strings.

Example 1:

Input: text1 = "cat", text2 = "crabt" 

Output: 3 

Explanation: The longest common subsequence is “cat” which has a length of 3.

Example 2:

Input: text1 = "abcd", text2 = "abcd"

Output: 4

Example 3:

Input: text1 = "abcd", text2 = "efgh"

Output: 0

Constraints:

1 <= text1.length, text2.length <= 1000

text1 and text2 consist of only lowercase English characters.

Solution

Let d p [ i ] [ j ] dp[i][j] dp[i][j] represents the length of longest common subsequence between t e x t 1 0 : i text1_{0:i} text10:i and t e x t 2 0 : j text2_{0:j} text20:j. If t e x t 1 [ i ] = = t e x t 2 [ j ] text1[i]==text2[j] text1[i]==text2[j], then we can transfer from d p [ i − 1 ] [ j − 1 ] dp[i-1][j-1] dp[i1][j1] that d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] + 1 dp[i][j] = dp[i-1][j-1]+1 dp[i][j]=dp[i1][j1]+1. Or d p [ i ] [ j ] dp[i][j] dp[i][j] will be max ⁡ ( d p [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] ] ) \max(dp[i-1][j], dp[i][j-1]]) max(dp[i1][j],dp[i][j1]]), because t e x t 1 [ i ] text1[i] text1[i] and t e x t 2 [ j ] text2[j] text2[j] do not make any contribution to the common subsequence.

Code

class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        dp = [[0]*len(text2) for _ in range(len(text1))]
        for j in range(len(text2)):
            dp[0][j] = 1 if text1[0] == text2[j] else 0
        for j in range(1, len(text2)):
            dp[0][j] = max(dp[0][j], dp[0][j-1])
        for i in range(1, len(text1)):
            dp[i][0] = 1 if text1[i] == text2[0] else 0
            dp[i][0] = max(dp[i][0], dp[i-1][0])
            for j in range(1, len(text2)):
                if text1[i] == text2[j]:
                    dp[i][j] = dp[i-1][j-1]+1
                else:
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1])
        print(dp)
        return dp[-1][-1]
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShadyPi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值