原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4300
绝世好题
Description
给定一个长度为n的数列ai,求ai的子序列bi的最长长度,满足bi&bi-1!=0(2<=i<=len)。
Input
输入文件共2行。
第一行包括一个整数n。
第二行包括n个整数,第i个整数表示ai。
Output
输出文件共一行。
包括一个整数,表示子序列bi的最长长度。
Sample Input
3
1 2 3
Sample Output
2
HINT
n<=100000,ai<=2 * 10^9
题解
博主只想到了 O(n2) O ( n 2 ) 的做法,所以仔细钻研了网上大佬的博客,发现题解只有三个字:
卧槽!!果然是我太菜了吗orz?!
其实,因为是位运算,所以我们需要用dp[i]维护第i位为1的序列最长序列的长度,新加入一个数的时候,我们只需要查看它二进制下的每一位是否为一,如果那一位为一的话,那么就可以更新dp[i]的值。
代码
#include<bits/stdc++.h>
using namespace std;
const int M=1e5+5;
int x[M],dp[40],n;
void in()
{
scanf("%d",&n);
for(int i=1;i<=n;++i)
scanf("%d",&x[i]);
}
void ac()
{
int p,t;
for(int i=1;i<=n;++i)
{
p=x[i],t=0;
for(int j=1;j<=31;++j,p>>=1)
if(p&1)t=max(t,dp[j]+1);
p=x[i];
for(int j=1;j<=31;++j,p>>=1)
if(p&1)dp[j]=t;
}
int ans=0;
for(int i=1;i<=31;++i)
ans=max(ans,dp[i]);
printf("%d",ans);
}
int main()
{
in();ac();
return 0;
}