BZOJ4300 绝世好题

原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4300

绝世好题

Description

给定一个长度为n的数列ai,求ai的子序列bi的最长长度,满足bi&bi-1!=0(2<=i<=len)。

Input

输入文件共2行。
第一行包括一个整数n。
第二行包括n个整数,第i个整数表示ai。

Output

输出文件共一行。
包括一个整数,表示子序列bi的最长长度。

Sample Input

3
1 2 3

Sample Output

2

HINT

n<=100000,ai<=2 * 10^9

题解

博主只想到了 O(n2) O ( n 2 ) 的做法,所以仔细钻研了网上大佬的博客,发现题解只有三个字:

卧槽!!果然是我太菜了吗orz?!

其实,因为是位运算,所以我们需要用dp[i]维护第i位为1的序列最长序列的长度,新加入一个数的时候,我们只需要查看它二进制下的每一位是否为一,如果那一位为一的话,那么就可以更新dp[i]的值。

代码
#include<bits/stdc++.h>
using namespace std;
const int M=1e5+5;
int x[M],dp[40],n;
void in()
{
    scanf("%d",&n);
    for(int i=1;i<=n;++i)
    scanf("%d",&x[i]);
}
void ac()
{
    int p,t;
    for(int i=1;i<=n;++i)
    {
        p=x[i],t=0;
        for(int j=1;j<=31;++j,p>>=1)
        if(p&1)t=max(t,dp[j]+1);
        p=x[i];
        for(int j=1;j<=31;++j,p>>=1)
        if(p&1)dp[j]=t;
    }
    int ans=0;
    for(int i=1;i<=31;++i)
    ans=max(ans,dp[i]);
    printf("%d",ans);
}
int main()
{
    in();ac();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShadyPi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值