BZOJ1010[HNOI2008] 玩具装箱toy

原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1010

玩具装箱toy

Description

  P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1…N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.

Input

  第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

Output

  输出最小费用

Sample Input

5 4
3
4
2
1
4

Sample Output

1

题解

我们以 dp[i] d p [ i ] 表示前 i i 个物品装箱的最小费用,因为玩具必须连号,所以我们要找到一个j(j<i)使得玩具 ji j → i 打包的费用最小,设 sum[i]=ij=1Cj s u m [ i ] = ∑ j = 1 i C j ,于是就有了状态转移方程:    

dp[i]=min(dp[j]+(sum[i]sum[j]+ij1L)2) d p [ i ] = m i n ( d p [ j ] + ( s u m [ i ] − s u m [ j ] + i − j − 1 − L ) 2 )
 

f[i]=sum[i]+i,b=L+1 f [ i ] = s u m [ i ] + i , b = L + 1 ,就有:

dp[i]=min(dp[j]+(f[i]f[j]b)2) d p [ i ] = m i n ( d p [ j ] + ( f [ i ] − f [ j ] − b ) 2 )

接下来求解斜率方程 (k<j<i) ( k < j < i )


dp[k]+(f[i]f[k]b)2<dp[j]+(f[i]f[j]b)2 d p [ k ] + ( f [ i ] − f [ k ] − b ) 2 < d p [ j ] + ( f [ i ] − f [ j ] − b ) 2
dp[k]+(f[i]b)2+f2[k]2(f[i]b)f[k]<dp[j]+(f[i]b)2+f2[j]2(f[i]b)f[j] d p [ k ] + ( f [ i ] − b ) 2 + f 2 [ k ] − 2 ( f [ i ] − b ) f [ k ] < d p [ j ] + ( f [ i ] − b ) 2 + f 2 [ j ] − 2 ( f [ i ] − b ) f [ j ]
dp[k]+f2[k]dp[j]f2[j]<2(f[i]b)(f[k]f[j]) d p [ k ] + f 2 [ k ] − d p [ j ] − f 2 [ j ] < 2 ( f [ i ] − b ) ( f [ k ] − f [ j ] )
dp[k]+f2[k]dp[j]f2[j]f[k]f[j]>2(f[i]b) d p [ k ] + f 2 [ k ] − d p [ j ] − f 2 [ j ] f [ k ] − f [ j ] > 2 ( f [ i ] − b )  

这样就推导完成了,跑一发斜率优化即可AC。

代码
#include<bits/stdc++.h>
#define ll long long
#define db double
using namespace std;
const int M=5e4+5;
int n,l,que[M];
ll f[M],dp[M];
void in()
{
    scanf("%d%d",&n,&l);
    for(int i=1;i<=n;++i)
    scanf("%d",&f[i]);
}
ll sqr(ll x){return x*x;}
db slop(int a,int b)
{return (dp[a]+f[a]*f[a]-dp[b]-f[b]*f[b])/(f[a]-f[b]);}
void ac()
{
    for(int i=2;i<=n;++i)
    f[i]+=f[i-1];
    for(int i=1;i<=n;++i)
    f[i]+=i;
    int le=0,ri=0;
    for(int i=1;i<=n;++i)
    {
        while(le<ri&&slop(que[le],que[le+1])<=2*(f[i]-l-1))le++;
        dp[i]=dp[que[le]]+sqr(f[i]-f[que[le]]-l-1);
        while(le<ri&&slop(que[ri],i)<=slop(que[ri-1],que[ri]))ri--;
        que[++ri]=i;
    }
    printf("%lld",dp[n]);
}
int main()
{
    in();ac();
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShadyPi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值