原题链接:https://www.luogu.org/problemnew/show/P4114
Qtree1
题目背景
数据规模和spoj上有所不同
题目描述
给定一棵n个节点的树,有两个操作:
CHANGE i ti 把第i条边的边权变成ti
QUERY a b 输出从a到b的路径中最大的边权,当a=b的时候,输出0
输入输出格式
输入格式:
第一行输入一个n,表示节点个数
第二行到第n行每行输入三个数,ui,vi,wi,分别表示 ui,vi有一条边,边权是wi
第n+1行开始,一共有不定数量行,每一行分别有以下三种可能
CHANGE,QUERY同题意所述
DONE表示输入结束
输出格式:
对于每个QUERY操作,输出一个数,表示a b之间边权最大值
输入输出样例
输入样例#1:
3
1 2 1
2 3 2
QUERY 1 2
CHANGE 1 3
QUERY 1 2
DONE
输出样例#1:
1
3
说明
数据保证:
1 ≤ ≤ n ≤ ≤ 1 0 5 1 \leq≤ n \leq≤ 10^5 1≤≤n≤≤105
操作次数 ≤ ≤ 3 ∗ 1 0 5 \leq≤ 3* 10^5 ≤≤3∗105
wi和ti$ \leq≤ 2^{31}-1$
题解
Qtree应该是经典的树链剖分题目了吧,所以我们用 L C T \mathcal{LCT} LCT来做这道题。。。
我们把一条边变成点来维护,改边权的时候直接修改点权,再维护个最大值即可。
L C T \mathcal{LCT} LCT常数是真的大,要开 i n l i n e r e g i s t e r \mathcal{inline\ register} inline register才能过。。。
代码
#include<bits/stdc++.h>
#define I inline void
#define R register int
#define ls son[v][0]
#define rs son[v][1]
using namespace std;
const int M=2e5+5;
int n,q,dad[M],son[M][2],val[M],mx[M],sta[M];
bool rev[M];
inline bool notroot(R v){return son[dad[v]][0]==v||son[dad[v]][1]==v;}
I up(R v){mx[v]=max(val[v],max(mx[ls],mx[rs]));}
I turn(R v){swap(ls,rs);rev[v]^=1;}
I push(R v){if(!rev[v])return;if(ls)turn(ls);if(rs)turn(rs);rev[v]=0;}
I spin(R v)
{
int f=dad[v],ff=dad[f],k=son[f][1]==v,w=son[v][!k];
if(notroot(f))son[ff][son[ff][1]==f]=v;
son[v][!k]=f;son[f][k]=w;
if(w)dad[w]=f;
dad[f]=v;dad[v]=ff;
up(f);up(v);
}
I splay(R v)
{
int f,ff,top=0,u=v;
sta[++top]=u;
while(notroot(u))sta[++top]=u=dad[u];
while(top)push(sta[top--]);
while(notroot(v))
{
f=dad[v];ff=dad[f];
if(notroot(f))spin((son[f][0]==v)^(son[ff][0]==f)?v:f);
spin(v);
}
}
I access(int v){for(R f=0;v;v=dad[f=v])splay(v),rs=f,up(v);}
I beroot(int v){access(v);splay(v);turn(v);}
I split(int x,int y){beroot(x);access(y);splay(y);}
I link(int x,int y){beroot(x);dad[x]=y;}
void in()
{
int a,b,c;
scanf("%d",&n);
for(R i=1;i<n;++i)
{
scanf("%d%d%d",&a,&b,&c);
val[i+n]=c;mx[i+n]=c;
link(a,i+n);link(b,i+n);
}
}
void ac()
{
int a,b;
char ch[10];
while(scanf("%s",ch)&&ch[0]!='D')
{
scanf("%d%d",&a,&b);
if(ch[0]=='Q'){split(a,b);printf("%d\n",mx[b]);}
else {splay(a+n);val[a+n]=b;up(a+n);}
}
}
int main()
{
in();ac();
return 0;
}