Luogu4114 Qtree1

原题链接:https://www.luogu.org/problemnew/show/P4114

Qtree1

题目背景

数据规模和spoj上有所不同

题目描述

给定一棵n个节点的树,有两个操作:

CHANGE i ti 把第i条边的边权变成ti

QUERY a b 输出从a到b的路径中最大的边权,当a=b的时候,输出0

输入输出格式
输入格式:

第一行输入一个n,表示节点个数

第二行到第n行每行输入三个数,ui,vi,wi,分别表示 ui,vi有一条边,边权是wi

第n+1行开始,一共有不定数量行,每一行分别有以下三种可能

CHANGE,QUERY同题意所述

DONE表示输入结束

输出格式:

对于每个QUERY操作,输出一个数,表示a b之间边权最大值

输入输出样例
输入样例#1:

3
1 2 1
2 3 2
QUERY 1 2
CHANGE 1 3
QUERY 1 2
DONE

输出样例#1:

1
3

说明

数据保证:

1 ≤ ≤ n ≤ ≤ 1 0 5 1 \leq≤ n \leq≤ 10^5 1n105

操作次数 ≤ ≤ 3 ∗ 1 0 5 \leq≤ 3* 10^5 3105

wi和ti$ \leq≤ 2^{31}-1$

题解

Qtree应该是经典的树链剖分题目了吧,所以我们用 L C T \mathcal{LCT} LCT来做这道题。。。

我们把一条边变成点来维护,改边权的时候直接修改点权,再维护个最大值即可。

L C T \mathcal{LCT} LCT常数是真的大,要开 i n l i n e   r e g i s t e r \mathcal{inline\ register} inline register才能过。。。

代码
#include<bits/stdc++.h>
#define I inline void
#define R register int
#define ls son[v][0]
#define rs son[v][1]
using namespace std;
const int M=2e5+5;
int n,q,dad[M],son[M][2],val[M],mx[M],sta[M];
bool rev[M];
inline bool notroot(R v){return son[dad[v]][0]==v||son[dad[v]][1]==v;}
I up(R v){mx[v]=max(val[v],max(mx[ls],mx[rs]));}
I turn(R v){swap(ls,rs);rev[v]^=1;}
I push(R v){if(!rev[v])return;if(ls)turn(ls);if(rs)turn(rs);rev[v]=0;}
I spin(R v)
{
    int f=dad[v],ff=dad[f],k=son[f][1]==v,w=son[v][!k];
    if(notroot(f))son[ff][son[ff][1]==f]=v;
    son[v][!k]=f;son[f][k]=w;
    if(w)dad[w]=f;
    dad[f]=v;dad[v]=ff;
    up(f);up(v);
}
I splay(R v)
{
    int f,ff,top=0,u=v;
    sta[++top]=u;
    while(notroot(u))sta[++top]=u=dad[u];
    while(top)push(sta[top--]);
    while(notroot(v))
    {
        f=dad[v];ff=dad[f];
        if(notroot(f))spin((son[f][0]==v)^(son[ff][0]==f)?v:f);
        spin(v);
    }
}
I access(int v){for(R f=0;v;v=dad[f=v])splay(v),rs=f,up(v);}
I beroot(int v){access(v);splay(v);turn(v);}
I split(int x,int y){beroot(x);access(y);splay(y);}
I link(int x,int y){beroot(x);dad[x]=y;}
void in()
{
    int a,b,c;
    scanf("%d",&n);
    for(R i=1;i<n;++i)
    {
        scanf("%d%d%d",&a,&b,&c);
        val[i+n]=c;mx[i+n]=c;
        link(a,i+n);link(b,i+n);
    }
}
void ac()
{
    int a,b;
    char ch[10];
    while(scanf("%s",ch)&&ch[0]!='D')
    {
        scanf("%d%d",&a,&b);
        if(ch[0]=='Q'){split(a,b);printf("%d\n",mx[b]);}
        else {splay(a+n);val[a+n]=b;up(a+n);}
    }
}
int main()
{
    in();ac();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShadyPi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值