原题链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1176
Mokia
Description
维护一个W*W的矩阵,初始值均为S.每次操作可以增加某格子的权值,或询问某子矩阵的总权值.修改操作数M<=160000,询问数Q<=10000,W<=2000000.
Input
第一行两个整数,S,W;其中S为矩阵初始值;W为矩阵大小
接下来每行为一下三种输入之一(不包含引号):
“1 x y a”
“2 x1 y1 x2 y2”
“3”
输入1:你需要把(x,y)(第x行第y列)的格子权值增加a
输入2:你需要求出以左下角为(x1,y1),右上角为(x2,y2)的矩阵内所有格子的权值和,并输出
输入3:表示输入结束
Output
对于每个输入2,输出一行,即输入2的答案
Sample Input
0 4
1 2 3 3
2 1 1 3 3
1 2 2 2
2 2 2 3 4
3
Sample Output
3
5
HINT
保证答案不会超过int范围
题解
树套树是不可能树套树了,这辈子都不可能树套树了, KD Tree K D T r e e 又不会,只能用 cdq c d q 才能勉强 AC A C 这样子。。。
将一个询问以四个顶点拆成四个询问,其他的正常做就好了。
代码
#include<bits/stdc++.h>
using namespace std;
struct sd{int op,x,y,val,id,t;};
const int M=2e6;
int w,s,base=1,sum[M<<2],ans[M],tot,cot;
sd tmp[M],ope[M];
bool operator <(sd a,sd b)
{
if(a.x!=b.x)return a.x<b.x;
if(a.y!=b.y)return a.y<b.y;
return a.op<b.op;
}
void add(int v,int s){v+=base;for(;v;v>>=1)sum[v]+=s;}
int query(int ri)
{
int ans=0,le=base;ri+=base+1;
for(;le^ri^1;le>>=1,ri>>=1)
{
if(le&1^1)ans+=sum[le+1];
if(ri&1)ans+=sum[ri-1];
}
return ans;
}
void cdq(int le,int ri)
{
if(le==ri)return;
int mid=le+ri>>1,p1=le,p2=mid+1;
for(int i=le;i<=ri;++i)
{
if(ope[i].t<=mid&&!ope[i].op)add(ope[i].y,ope[i].val);
if(ope[i].t>mid&&ope[i].op)ans[ope[i].id]+=ope[i].val*query(ope[i].y);
}
for(int i=le;i<=ri;++i)if(ope[i].t<=mid&&!ope[i].op)add(ope[i].y,-ope[i].val);
for(int i=le;i<=ri;++i)
if(ope[i].t<=mid)tmp[p1++]=ope[i];
else tmp[p2++]=ope[i];
for(int i=le;i<=ri;++i)ope[i]=tmp[i];
cdq(le,mid);cdq(mid+1,ri);
}
void in()
{
int op,a,b,c,d;
scanf("%d%d",&s,&w);
while(base<w)base<<=1;
while(1)
{
scanf("%d",&op);
if(op==1)scanf("%d%d%d",&a,&b,&c),ope[++tot]=(sd){0,a,b,c,0,tot};
else if(op==2)
{
scanf("%d%d%d%d",&a,&b,&c,&d);
ope[++tot]=(sd){1,a-1,b-1,1,++cot,tot};
ope[++tot]=(sd){1,a-1,d,-1,cot,tot};
ope[++tot]=(sd){1,c,b-1,-1,cot,tot};
ope[++tot]=(sd){1,c,d,1,cot,tot};
}
else break;
}
}
void ac()
{
sort(ope+1,ope+1+tot);
cdq(1,tot);
for(int i=1;i<=cot;++i)
printf("%d\n",ans[i]);
}
int main()
{
in();ac();
return 0;
}