BZOJ1176[Balkan2007] Mokia

原题链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1176

Mokia

Description

维护一个W*W的矩阵,初始值均为S.每次操作可以增加某格子的权值,或询问某子矩阵的总权值.修改操作数M<=160000,询问数Q<=10000,W<=2000000.

Input

第一行两个整数,S,W;其中S为矩阵初始值;W为矩阵大小

接下来每行为一下三种输入之一(不包含引号):

“1 x y a”

“2 x1 y1 x2 y2”

“3”

输入1:你需要把(x,y)(第x行第y列)的格子权值增加a

输入2:你需要求出以左下角为(x1,y1),右上角为(x2,y2)的矩阵内所有格子的权值和,并输出

输入3:表示输入结束

Output

对于每个输入2,输出一行,即输入2的答案

Sample Input

0 4
1 2 3 3
2 1 1 3 3
1 2 2 2
2 2 2 3 4
3

Sample Output

3
5

HINT

保证答案不会超过int范围

题解

树套树是不可能树套树了,这辈子都不可能树套树了, KD Tree K D   T r e e 又不会,只能用 cdq c d q 才能勉强 AC A C 这样子。。。

将一个询问以四个顶点拆成四个询问,其他的正常做就好了。

代码
#include<bits/stdc++.h>
using namespace std;
struct sd{int op,x,y,val,id,t;};
const int M=2e6;
int w,s,base=1,sum[M<<2],ans[M],tot,cot;
sd tmp[M],ope[M];
bool operator <(sd a,sd b)
{
    if(a.x!=b.x)return a.x<b.x;
    if(a.y!=b.y)return a.y<b.y;
    return a.op<b.op;
}
void add(int v,int s){v+=base;for(;v;v>>=1)sum[v]+=s;}
int query(int ri)
{
    int ans=0,le=base;ri+=base+1;
    for(;le^ri^1;le>>=1,ri>>=1)
    {
        if(le&1^1)ans+=sum[le+1];
        if(ri&1)ans+=sum[ri-1];
    }
    return ans;
}
void cdq(int le,int ri)
{
    if(le==ri)return;
    int mid=le+ri>>1,p1=le,p2=mid+1;
    for(int i=le;i<=ri;++i)
    {
        if(ope[i].t<=mid&&!ope[i].op)add(ope[i].y,ope[i].val);
        if(ope[i].t>mid&&ope[i].op)ans[ope[i].id]+=ope[i].val*query(ope[i].y);
    }
    for(int i=le;i<=ri;++i)if(ope[i].t<=mid&&!ope[i].op)add(ope[i].y,-ope[i].val);
    for(int i=le;i<=ri;++i)
    if(ope[i].t<=mid)tmp[p1++]=ope[i];
    else tmp[p2++]=ope[i];
    for(int i=le;i<=ri;++i)ope[i]=tmp[i];
    cdq(le,mid);cdq(mid+1,ri);
}
void in()
{
    int op,a,b,c,d;
    scanf("%d%d",&s,&w);
    while(base<w)base<<=1;
    while(1)
    {
        scanf("%d",&op);
        if(op==1)scanf("%d%d%d",&a,&b,&c),ope[++tot]=(sd){0,a,b,c,0,tot};
        else if(op==2)
        {   
            scanf("%d%d%d%d",&a,&b,&c,&d);
            ope[++tot]=(sd){1,a-1,b-1,1,++cot,tot};
            ope[++tot]=(sd){1,a-1,d,-1,cot,tot};
            ope[++tot]=(sd){1,c,b-1,-1,cot,tot};
            ope[++tot]=(sd){1,c,d,1,cot,tot};
        }
        else break;
    }
}
void ac()
{
    sort(ope+1,ope+1+tot);
    cdq(1,tot);
    for(int i=1;i<=cot;++i)
    printf("%d\n",ans[i]);
}
int main()
{
    in();ac();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShadyPi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值