BZOJ5192[Usaco2018 Feb] New Barns

39 篇文章 0 订阅
26 篇文章 0 订阅

原题链接:https://www.lydsy.com/JudgeOnline/problem.php?id=5192

New Barns

Description

FarmerJohn注意到他的奶牛们如果被关得太紧就容易吵架,所以他想开放一些新的牛棚来分散她们。每当FJ建造一个新牛棚的时候,他会将这个牛棚用至多一条双向道路与一个现有的牛棚连接起来。为了确保他的奶牛们足够分散,他有时想要确定从某个特定的牛棚出发,到它能够到达的最远的牛棚的距离(两个牛棚之间的距离等于从一个牛棚出发到另一个之间必须经过的道路条数)。FJ总共会给出Q(1≤Q≤10^5)次请求,每个请求都是“建造”和“距离”之一。对于一个建造请求,FJ建造一个牛棚,并将其与至多一个现有的牛棚连接起来。对于一个距离请求,FJ向你询问从某个特定的牛棚通过一些道路到离它最远的牛棚的距离。保证询问的牛棚已经被建造。请帮助FJ响应所有的请求。

Input

第一行包含一个整数Q

以下Q行,每行包含一个请求。每个请求的格式都是“B p”或是“Q k”

分别告诉你建造一个牛棚并与牛棚p连接,或是根据定义求从牛棚k出发最远的距离。

如果p=-1,则新的牛棚不会与其他牛棚连接。

否则,p是一个已经建造的牛棚的编号。

牛棚编号从1开始,所以第一个被建造的谷仓是1号谷仓,第二个是2号谷仓,以此类推。

Output

对于每个距离请求输出一行。注意一个没有连接到其他牛棚的牛棚的最远距离为0

Sample Input

7
B -1
Q 1
B 1
B 2
Q 3
B 2
Q 2

Sample Output

0
2
1

输入样例对应下面的牛棚网:

  (1) 

    \   

     (2)---(4)

    /

  (3)

对于请求1,我们建造牛棚1。对于请求2,我们询问从1出发到最远连接的牛棚的距离。由于牛棚1没有与其他牛棚连接,所以回答是0。对于请求3,我们建造牛棚2并将其与牛棚1连接。对于请求4,我们建造牛棚3并将其与牛棚2连接。对于请求5,我们询问从3出发到最远连接的牛棚的距离。在这时,最远的是牛棚1,距离为2单位。对于请求6,我们建造牛棚4并将其与牛棚2连接。对于请求7,我们询问从2出发到最远连接的牛棚的距离。所有其他三个牛棚1,3,4都与2相距相同的距离1,所以这就是我们的回答。

题解

大力 L C T \mathcal{LCT} LCT维护树的直径

LCT天下第一!!!!

代码
#include<bits/stdc++.h>
#define ls son[v][0]
#define rs son[v][1]
using namespace std;
const int M=1e5+5;
int dad[M],son[M][2],sum[M],le[M],ri[M],f[M],q,tot;
char ch[5];
bool rev[M];
bool notroot(int v){return son[dad[v]][0]==v||son[dad[v]][1]==v;}
void up(int v){sum[v]=sum[ls]+sum[rs]+1;}
void turn(int v){swap(ls,rs);rev[v]^=1;}
void push(int v){if(!rev[v])return;if(ls)turn(ls);if(rs)turn(rs);rev[v]=0;}
void down(int v){if(notroot(v))down(dad[v]);push(v);}
void spin(int v)
{
	int f=dad[v],ff=dad[f],k=son[f][1]==v,w=son[v][!k];
	if(notroot(f))son[ff][son[ff][1]==f]=v;son[v][!k]=f,son[f][k]=w;
	if(w)dad[w]=f;dad[f]=v,dad[v]=ff;
	up(f);
}
void splay(int v)
{
	down(v);int f,ff;
	while(notroot(v))
	{
		f=dad[v],ff=dad[f];
		if(notroot(f))spin((son[f][0]==v)^(son[ff][0]==f)?v:f);
		spin(v);
	}
	up(v);
}
void access(int v){for(int f=0;v;v=dad[f=v])splay(v),rs=f,up(v);}
void beroot(int v){access(v),splay(v),turn(v);}
void link(int x,int y){splay(x),dad[x]=y;}
int dis(int x,int y){beroot(x),access(y),splay(y);return sum[y]-1;}
int find(int v){return f[v]==v?v:f[v]=find(f[v]);}
void in(){scanf("%d",&q);}
void ac()
{
	int x,l1,l2,l3;
	while(q--)
	{
		scanf("%s%d",ch,&x);
		if(ch[0]=='B')
		{
			++tot;
			if(x==-1)f[tot]=le[tot]=ri[tot]=tot;
			else
			{
				link(tot,x);x=f[tot]=find(x);
				l1=dis(tot,le[x]),l2=dis(tot,ri[x]),l3=dis(le[x],ri[x]);
				if(l1>=l2&&l1>=l3)ri[x]=tot;else if(l2>=l1&&l2>=l3)le[x]=tot;
			}
		}
		else l1=find(x),printf("%d\n",max(dis(le[l1],x),dis(ri[l1],x)));
	}
}
int main(){in();ac();}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShadyPi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值