Luogu3387【模板】缩点(Kosaraju)

原题链接:https://www.luogu.org/problemnew/show/P3387

【模板】缩点

题目背景

缩点+DP

题目描述

给定一个n个点m条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大。你只需要求出这个权值和。

允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次。

输入输出格式
输入格式:

第一行,n,m

第二行,n个整数,依次代表点权

第三至m+2行,每行两个整数u,v,表示u->v有一条有向边

输出格式:

共一行,最大的点权之和。

输入输出样例
输入样例#1:

2 2
1 1
1 2
2 1

输出样例#1:

2

说明

n&lt;=104,m&lt;=105n&lt;=10^4,m&lt;=10^5,点权<=1000

算法:Tarjan缩点+DAGdp

题解

学习一下求scc\mathcal{scc}的新姿势Kosaraju\mathcal{Kosaraju}

算法流程:
1.在反向图上dfsdfs,返回时将当前点放进栈里。
2.从栈尾倒序dfsdfs,每次dfsdfs到的点都在一个sccscc里。

先考虑下面这个简单有向图:

1.png

如果我们从B\mathcal{B}部分开始dfsdfs,那么每次出来的都是一个sccscc,但是从A\mathcal{A}开始就会把整张图误判为一个sccscc

如果我们要让每次dfsdfs到的恰好构成一个sccscc,就要使这个sccscc内的点没有指向其他未被遍历过的sccscc,如564132564132这个顺序。

但这个条件似乎太过苛刻了,只要有一个B\mathcal{B}部分的点排在了第一个,我们就能得到正确的答案,所以我们需要第一次dfsdfs来搞出反向图的伪拓扑序,按照这个伪拓扑序dfsdfs就能得到正确的答案辣!

代码
#include<bits/stdc++.h>
using namespace std;
const int M=2e5+5,N=1e4+5;
int val[N],head[M],nxt[M],to[M],sta[N],col[N],dp[N],top,tot,cnt,n,m;
bool vis[N];
vector<int>mmp[M],scc[M];
void add(int f,int t){nxt[++cnt]=head[f],head[f]=cnt,to[cnt]=t;}
void dfs1(int v){int i;for(vis[v]=1,i=head[v];i;i=nxt[i])if(!vis[to[i]])dfs1(to[i]);sta[++top]=v;}
void dfs2(int v){int i;for(vis[v]=1,scc[tot].push_back(v),col[v]=tot,dp[tot]+=val[v],i=mmp[v].size()-1;i>=0;--i)if(!vis[mmp[v][i]])dfs2(mmp[v][i]);}
void dfs3(int v)
{
    if(vis[v])return;
    vis[v]=1;int i,j,mx=0,t;
    for(i=scc[v].size()-1;i>=0;--i)
    for(j=mmp[scc[v][i]].size()-1;j>=0;--j)
    {
        t=col[mmp[scc[v][i]][j]];
        if(t==v)continue;
        if(!vis[t])dfs3(t);
        mx=max(mx,dp[t]);
    }
    dp[v]+=mx;
}
void in()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;++i)scanf("%d",&val[i]);
    for(int i=1,a,b;i<=m;++i)scanf("%d%d",&a,&b),add(b,a),mmp[a].push_back(b);
}
void ac()
{
    int i,mx=0;
    for(i=1;i<=n;++i)if(!vis[i])dfs1(i);
    memset(vis,0,sizeof(vis));
    for(i=top;i>=1;--i)if(!vis[sta[i]])++tot,dfs2(sta[i]);
    memset(vis,0,sizeof(vis));
    for(i=1;i<=tot;++i)if(!vis[i])dfs3(i);
    for(int i=1;i<=tot;++i)mx=max(mx,dp[i]);
    printf("%d",mx);
}
int main(){in();ac();}
发布了379 篇原创文章 · 获赞 407 · 访问量 6万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 精致技术 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览