原题链接:https://www.luogu.org/problemnew/solution/P1005
矩阵取数游戏
题目描述
帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的 n × m n \times m n×m的矩阵,矩阵中的每个元素 a i , j a_{i,j} ai,j均为非负整数。游戏规则如下:
每次取数时须从每行各取走一个元素,共
n
n
n个。经过
m
m
m次后取完矩阵内所有元素;
每次取走的各个元素只能是该元素所在行的行首或行尾;
每次取数都有一个得分值,为每行取数的得分之和,每行取数的得分
=
=
=被取走的元素值
×
2
i
\times 2^i
×2i ,其中
i
i
i表示第
i
i
i次取数(从
1
1
1开始编号);
游戏结束总得分为
m
m
m次取数得分之和。
帅帅想请你帮忙写一个程序,对于任意矩阵,可以求出取数后的最大得分。
输入输出格式
输入格式:
输入文件包括 n + 1 n+1 n+1行:
第 1 1 1行为两个用空格隔开的整数 n n n和 m m m。
第 2 n + 1 2~n+1 2 n+1行为 n × m n \times m n×m阵,其中每行有 m m m个用单个空格隔开的非负整数。
输出格式:
输出文件仅包含 1 1 1行,为一个整数,即输入矩阵取数后的最大得分。
输入输出样例
输入样例#1:
2 3
1 2 3
3 4 2
输出样例#1:
82
说明
NOIP 2007 提高第三题
数据范围:
60 % 60\% 60%的数据满足: 1 ≤ n , m ≤ 30 1\le n, m \le 30 1≤n,m≤30,答案不超过 1 0 16 10^{16} 1016
100 % 100\% 100%的数据满足: 1 ≤ n , m ≤ 80 1\le n, m \le 80 1≤n,m≤80, 0 ≤ a i , j ≤ 1000 0 \le a_{i,j} \le 1000 0≤ai,j≤1000
题解
每一行的策略互不影响,所以把每行分开考虑, d p [ i ] [ j ] dp[i][j] dp[i][j]表示区间 [ i , j ] [i,j] [i,j]的最优值,转移的时候枚举从头/尾取数取个 m a x max max。
因为爆了 l o n g l o n g long\ long long long,所以我们用 _ _ i n t 128 \_\_int128 __int128。
代码
#include<bits/stdc++.h>
#define ll __int128
using namespace std;
const int M=85;
int n,m;
char c;
ll val[M],dp[M][M],ans,r;
ll read()
{
for(r=0;!isdigit(c);c=getchar());
for(;isdigit(c);c=getchar())r=r*10+c-'0';
return r;
}
void out(ll x){if(x>9)out(x/10);putchar(x%10+'0');}
ll calc()
{
memset(dp,0,sizeof(dp));
for(int j=0;j<m;++j)for(int i=1;i+j<=m;++i)
dp[i][i+j]=max(dp[i+1][i+j]+val[i]<<1,dp[i][i+j-1]+val[i+j]<<1);
return dp[1][m];
}
void in(){scanf("%d%d",&n,&m);}
void ac(){for(int i=1;i<=n;++i,ans+=calc())for(int j=1;j<=m;++j)val[j]=read();out(ans);}
int main(){in(),ac();}