自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 something-somethingV2数据集的抽帧处理

关于ssv2数据集在抽帧过程中遇到的问题,ffmpeg出现乱码问题,最后生成空文件夹没有图片的问题

2023-10-28 20:23:58 1002 2

原创 PyTorch深度学习实践(十)卷积神经网络(基础篇)

输入的是一个5通道的,大小100*100的图像,输出是一个10通道的,大小98*98的图像 ,卷积层权重的形状是,输出是10通道的,输入是5通道,然后卷积核大小是3*3,它与输入图像是没关系的,但是如果你放入一个6通道的输入图像进去,他就会报错(因为输入通道已经定义好了是5)用3个卷积核(3*3*3)和3个通道(RGB)下的张量(3*5*5)做卷积之后得到一个张量(1*3*3)如果你想得到一个m个通道的输出张量,只需要用m个(3*3*3)的卷积核和输入张量做卷积,最后再把它们按照顺序拼接起来。

2023-07-14 14:36:05 212 1

原创 用Python实现soft-max分类

4.训练模型:使用梯度下降法或其他优化算法,最小化损失函数,得到最优的模型参数。3.定义模型:使用Python的NumPy库定义softmax函数和损失函数。1.准备数据集:将数据集分为训练集和测试集,并将特征和标签分开。5.预测结果:使用训练好的模型对测试集进行预测,并计算准确率。2.数据预处理:对特征进行归一化处理,使其在相同的尺度上。

2023-07-13 16:07:04 657 1

原创 PyTorch深度学习实践(六)逻辑斯蒂回归

9的概率分别是多少,如果只有这10个分类的话,它们所有的概率值之和为1,然后再在这些概率值当中找最大的那个,即可判定当前 x 的所属分类。回归任务的输出是将来能拿的分(point),分类任务不再关注这个,而转向未来能够通过考试(pass/fail)一个最基础的二分类问题,涉及只有 pass 和 fail ,只有0和1两个分类。,即认为它能通过考试,即选择它是1这个分类,若概率为0.5,此时无法判断它到底属于哪个分类,分类问题中我们实际要计算的是。二分类:输出的是两个分布之间的差异,用交叉熵衡量。

2023-07-10 16:53:46 114 1

原创 PyTorch深度学习实践(五)用pytorch实现线性回归

不然列表无法获取每一轮的epoch和loss值。最后实例化的时候要把它们放在循环体里面。比较不同的优化器的性能。

2023-07-09 18:14:13 96 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除