用Python实现soft-max分类

1.准备数据集:将数据集分为训练集和测试集,并将特征和标签分开。

2.数据预处理:对特征进行归一化处理,使其在相同的尺度上。

3.定义模型:使用Python的NumPy库定义softmax函数和损失函数。

4.训练模型:使用梯度下降法或其他优化算法,最小化损失函数,得到最优的模型参数。

5.预测结果:使用训练好的模型对测试集进行预测,并计算准确率。

这里还需要用到Numpy库和scikit-learn库,具体代码如下:

import numpy as np
from sklearn.metrics import accuracy_score

# 定义softmax函数
def softmax(x):
    exp_x = np.exp(x)
    return exp_x / np.sum(exp_x, axis=1, keepdims=True)

# 定义损失函数
def cross_entropy_loss(y_pred, y_true):
    m = y_true.shape[]
    loss = -np.sum(y_true * np.log(y_pred)) / m
    return loss

# 定义模型
class SoftmaxRegression:
    def __init__(self, n_features, n_classes, learning_rate=.01, n_iterations=100):
        self.n_features = n_features
        self.n_classes = n_classes
        self.learning_rate = learning_rate
        self.n_iterations = n_iterations
        self.weights = np.zeros((n_features, n_classes))
        self.bias = np.zeros((1, n_classes))

    def fit(self, X, y):
        for i in range(self.n_iterations):
            # 前向传播
            z = np.dot(X, self.weights) + self.bias
            y_pred = softmax(z)

            # 反向传播
            dW = np.dot(X.T, (y_pred - y)) / X.shape[]
            db = np.sum(y_pred - y, axis=, keepdims=True) / X.shape[]

            # 更新参数
            self.weights -= self.learning_rate * dW
            self.bias -= self.learning_rate * db

            # 计算损失函数
            loss = cross_entropy_loss(y_pred, y)

            # 打印损失函数
            if i % 100 == :
                print("Iteration %d, loss = %f" % (i, loss))

    def predict(self, X):
        z = np.dot(X, self.weights) + self.bias
        y_pred = softmax(z)
        return np.argmax(y_pred, axis=1)

# 加载数据集
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
y = iris.target

# 数据预处理
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X = scaler.fit_transform(X)

# 将标签转换为one-hot编码
from sklearn.preprocessing import OneHotEncoder
encoder = OneHotEncoder(sparse=False)
y_onehot = encoder.fit_transform(y.reshape(-1, 1))

# 划分训练集和测试集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y_onehot, test_size=.2, random_state=42)

# 训练模型
model = SoftmaxRegression(n_features=X.shape[1], n_classes=y_onehot.shape[1], learning_rate=.1, n_iterations=100)
model.fit(X_train, y_train)

# 预测结果
y_pred = model.predict(X_test)
print("Accuracy:", accuracy_score(np.argmax(y_test, axis=1), y_pred))

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值