95% 的算法都是基于这 6 种算法思想

本文介绍了6种核心算法思想:递归、分治、贪心、回溯、动态规划和枚举。通过详细讲解每个算法策略、适用场景和经典案例,如递归的DOM树查找、分治的二分查找、贪心的活动选择问题、回溯的正则表达式匹配、动态规划的爬楼梯问题以及枚举的全排列问题,帮助读者理解如何运用这些算法解决实际编程问题。
摘要由CSDN通过智能技术生成

算法思想是解决问题的核心,万丈高楼起于平地,在算法中也是如此,95% 的算法都是基于这 6 种算法思想,结下了介绍一下这 6 种算法思想,帮助你理解及解决各种算法问题。

1 递归算法

1.1 算法策略

递归算法是一种直接或者间接调用自身函数或者方法的算法。

递归算法的实质是把问题分解成规模缩小的同类问题的子问题,然后递归调用方法来表示问题的解。递归算法对解决一大类问题很有效,它可以使算法简洁和易于理解。

优缺点:

  • 优点:实现简单易上手
  • 缺点:递归算法对常用的算法如普通循环等,运行效率较低;并且在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储,递归太深,容易发生栈溢出

1.2 适用场景

递归算法一般用于解决三类问题:

  • 数据的定义是按递归定义的。(斐波那契数列)
  • 问题解法按递归算法实现。(回溯)
  • 数据的结构形式是按递归定义的。(树的遍历,图的搜索)

递归的解题策略:

  • 第一步:明确你这个函数的输入输出,先不管函数里面的代码什么,而是要先明白,你这个函数的输入是什么,输出为何什么,功能是什么,要完成什么样的一件事。
  • 第二步:寻找递归结束条件,我们需要找出什么时候递归结束,之后直接把结果返回
  • 第三步:明确递归关系式,怎么通过各种递归调用来组合解决当前问题

1.3 使用递归算法求解的一些经典问题

  • 斐波那契数列
  • 汉诺塔问题
  • 树的遍历及相关操作

DOM树为例

下面以以 DOM 为例,实现一个 document.getElementById 功能

由于DOM是一棵树,而树的定义本身就是用的递归定义,所以用递归的方法处理树,会非常地简单自然。

第一步:明确你这个函数的输入输出

从 DOM 根节点一层层往下递归,判断当前节点的 id 是否是我们要寻找的 id='d-cal'

输入:DOM 根节点 document ,我们要寻找的 id='d-cal'

输出:返回满足 id='sisteran' 的子结点

function getElementById(node, id){}

第二步:寻找递归结束条件

从document开始往下找,对所有子结点递归查找他们的子结点,一层一层地往下查找:

  • 如果当前结点的 id 符合查找条件,则返回当前结点
  • 如果已经到了叶子结点了还没有找到,则返回 null
function getElementById(node, id){
    // 当前结点不存在,已经到了叶子结点了还没有找到,返回 null
    if(!node) return null
    // 当前结点的 id 符合查找条件,返回当前结点
    if(node.id === id) return node
}

第三步:明确递归关系式

当前结点的 id 不符合查找条件,递归查找它的每一个子结点

function getElementById(node, id){
    // 当前结点不存在,已经到了叶子结点了还没有找到,返回 null
    if(!node) return null
    // 当前结点的 id 符合查找条件,返回当前结点
    if(node.id === id) return node
    // 前结点的 id 不符合查找条件,继续查找它的每一个子结点
    for(var i = 0; i < node.childNodes.length; i++){
        // 递归查找它的每一个子结点
        var found = getElementById(node.childNodes[i], id);
        if(found) return found;
    }
    return null;
}

就这样,我们的一个 document.getElementById 功能已经实现了:

function getElementById(node, id){
    if(!node) return null;
    if(node.id === id) return node;
    for(var i = 0; i < node.childNodes.length; i++){
        var found = getElementById(node.childNodes[i], id);
        if(found) return found;
    }
    return null;
}
getElementById(document, "d-cal");

最后在控制台验证一下,执行结果如下图所示:

使用递归的优点是代码简单易懂,缺点是效率比不上非递归的实现。Chrome浏览器的查DOM是使用非递归实现。非递归要怎么实现呢?

如下代码:

function getByElementId(node, id){
    //遍历所有的Node
    while(node){
        if(node.id === id) return node;
        node = nextElement(node);
    }
    return null;
}

还是依次遍历所有的 DOM 结点,只是这一次改成一个 while 循环,函数 nextElement 负责找到下一个结点。所以关键在于这个 nextElement 如何实现非递归查找结点功能:

// 深度遍历
function nextElement(node){
    // 先判断是否有子结点
    if(node.children.length) {
        // 有则返回第一个子结点
        return node.children[0];
    }
    // 再判断是否有相邻结点
    if(node.nextElementSibling){
        // 有则返回它的下一个相邻结点
        return node.nextElementSibling;
    }
    // 否则,往上返回它的父结点的下一个相邻元素,相当于上面递归实现里面的for循环的i加1
    while(node.parentNode){
        if(node.parentNode.nextElementSibling) {
            return node.parentNode.nextElementSibling;
        }
        node = node.parentNode;
    }
    return null;
}

在控制台里面运行这段代码,同样也可以正确地输出结果。不管是非递归还是递归,它们都是深度优先遍历,这个过程如下图所示。

实际上 getElementById 浏览器是用的一个哈希 map 存储的,根据 id 直接映射到 DOM 结点,而 getElementsByClassName 就是用的这样的非递归查找。

参考:我接触过的前端数据结构与算法

2 分治算法

2.1 算法策略

在计算机科学中,分治算法是一个很重要的算法,快速排序、归并排序等都是基于分治策略进行实现的,所以,建议理解掌握它。

分治,顾名思义,就是 分而治之 ,将一个复杂的问题,分成两个或多个相似的子问题,在把子问题分成更小的子问题,直到更小的子问题可以简单求解,求解子问题,则原问题的解则为阿子问题解的合并。

2.2 适用场景

当出现满足以下条件的问题,可以尝试只用分治策略进行求解:

  • 原始问题可以分成多个相似的子问题
  • 子问题可以很简单的求解
  • 原始问题的解是子问题解的合并
  • 各个子问题是相互独立的,不包含相同的子问题

分治的解题策略:

  • 第一步:分解,将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题
  • 第二步:解决,解决各个子问题
  • 第三步:合并,将各个子问题的解合并为原问题的解

2.3 使用分治法求解的一些经典问题

  • 二分查找
  • 归并排序
  • 快速排序
  • 汉诺塔问题
  • React 时间分片

二分查找

也称折半查找算法,它是一种简单易懂的快速查找算法。例如我随机写0-100之间的一个数字,让你猜我写的是什么?你每猜一次,我就会告诉你猜的大了还是小了,直到猜中为止。

第一步:分解

每次猜拳都把上一次的结果分出大的一组和小的一组,两组相互独立

  • 选择数组中的中间数
function binarySearch(items, item) {
    // low、mid、high将数组分成两组
    var low = 0,
        high = items.length - 1,
        mid = Math.floor((low+high)/2),
        elem = items[mid]
    // ...
}

第二步:解决子问题

查找数与中间数对比

  • 比中间数低,则去中间数左边的子数组中寻找;
  • 比中间数高,则去中间数右边的子数组中寻找;
  • 相等则返回查找成功
while(low <= high) {
 if(elem < item) { // 比中间数高
  low = mid + 1
 } else if(elem > item) { // 比中间数低
  high = mid - 1
 } else { // 相等
     return mid
 }
}

第三步:合并

function binarySearch(items, item) {
    var low = 0,
        high = items.length - 1,
        mid, elem
    while(low <= high) {
        mid = Math.floor((low+high)/2)
        elem = items[mid]
        if(elem < item) {
            low = mid + 1
        } else if(elem > item) {
            high = mid - 1
        } else {
            return mid
        }
    }
    return -1
}

最后,二分法只能应用于数组有序的情况,如果数组无序,二分查找就不能起作用了

function binarySearch(items, item) {
    // 快排
    quickSort(items)
    var low = 0,
        high = items.length - 1,
        mid, elem
    while(low <= high) {
        mid = Math.floor((low+high)/2)
        elem = items[mid]
        if(elem < item) {
            low = mid + 1
        } else if(elem > item) {
            high = mid - 1
        } else {
            return mid
        }
    }
    return -1
}

// 测试
var arr = [2,3,1,4]
binarySearch(arr, 3)
// 2

binarySearch(arr, 5)
// -1

测试成功

3 贪心算法

3.1 算法策略

贪心算法,故名思义,总是做出当前的最优选择,即期望通过局部的最优选择获得整体的最优选择。

某种意义上说,贪心算法是很贪婪、很目光短浅的,它不从整体考虑,仅仅只关注当前的最大利益,所以说它做出的选择仅仅是某种意义上的局部最优,但是贪心算法在很多问题上还是能够拿到最优解或较优解,所以它的存在还是有意义的。

3.2 适用场景

在日常生活中,我们使用到贪心算法的时候还是挺多的,例如:<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值