日志异常检测准确率低?一文掌握日志指标序列分类

如果我们允许序列的点与另一序列的多个连续的点相对应(即,将这个点所代表的音调的发音时间延长),然后再计算对应点之间的距离之和,这就是dtw算法。在采用传统欧式距离,即点对点的方式计算发音序列距离时,距离之和如下: 欧式距离 = |A(1)-B(1)| + |A(2)-B(2)| + |A(3)-B(3)| + |A(4)-B(4)| + |A(5)-B(5)| + |A(6)-B(6)| =6_x0001_差分距离法是计算原始时间序列的一阶微分,然后度量两个时间序列的微分序列的距离,即微分距离。
摘要由CSDN通过智能技术生成

背景

目前,日志异常检测算法采用基于时间序列的方法检测异常,具体为:日志结构化->日志模式识别->时间序列转换->异常检测。异常检测算法根据日志指标时序数据的周期性检测出历史新增、时段新增、时段突增、时段突降等多种异常。

然而,在实际中,日志指标时序数据并不都具有周期性,或具有其他分布特征,因此仅根据周期性进行异常检测会导致误报率高、准确率低等问题。因此如果在日志异常检测之前,首先对日志指标时序数据进行分类,不同类型数据采用不同方法检测异常,可以有效提高准确率,并降低误报率。

日志指标序列的类型

日志指标序列分为时序数据与日志指标数据两大类:

  • 时序数据: 包含平稳型、周期型、趋势型、阶跃型。

在这里插入图片描述

  • 日志指标数据: 包含周期型、非周期型。

在这里插入图片描述

时间序列分类算法

时间序列分类是一项在多个领域均有应用的通用任务,目标是利用标记好的训练数据,确定一个时间序列属于预先定义的哪一个类别。 时间序列分类不同于常规分类问题,因为时序数据是具有顺序属性的序列。

时间序列分为传统时间序列分类算法与基于深度学习的时间序列分类算法。传统方法又根据算法采用的用于分类的特征类型不同,分为全局特征、局部特征、基于模型以及组合方法4大类。基于深度学习的时间序列算法分为生成式模型与判别式模型两大类。本文主要对传统时间序列分类算法进行介绍。

在这里插入图片描述

传统时间序列分类算法

基于全局特征的分类算法

全局特征分类是将完整时间序列作为特征,计算时间序列间的相似性来进行分类。分类方法有通过计算不同序列之间距离的远近来表达时间序列的相似性以及不同距离度量方法 + 1-NN(1-近邻)。主要研究序列相似性的度量方法。

  1. 时间域距离

问题场景描述:

如下图所示,问题场景是一个语音识别任务。该任务用数字表

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值