本质就是一个01背包的小变异问题。
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
#define INFINITY 65536
int main() {
int n, X;//菜品数量n和券的最低使用价格X
cin >> n >> X;
vector<int> dp(X + 1, INFINITY);//dp[i]是券的最低使用价格为i时所需的最低消费
int price;
dp[0] = 0;//边界条件初始化(dp[0]为0,其余为无穷大)
for (int i = 0; i < n; i++) {
cin >> price;//当前这道菜的价格
for (int j = X; j >= 0; j--) {//逆序,防止子问题的解被覆盖
if (j >= price) {
dp[j] = min(dp[j], dp[j - price] + price);//选或不选
}
else {//虽然当前这道菜的价格 大于 券的最低使用价格,但还是有可能出现只买这一道菜就是最优解的情况
dp[j] = min(dp[j], price);
}
}
}
cout << dp[X] << endl;
return 0;
}
如果坚持用二维,代码如下:
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
#define INFINITY 65536
//定义dp(i, j):当前背包容量(券的最低使用价格) j,前 i 个物品(菜)最佳组合对应的最低消费
int main() {
int n, X;
cin >> n >> X;//菜的数量n,券的最低使用价格
vector<int> price(n + 1, 0);
vector<vector<int>> dp(n + 1, vector<int>(X + 1, INFINITY));
for (int i = 1; i < n + 1; i++)
cin >> price[i];
for (int i = 0; i < n + 1; i++)//初始化
{
dp[i][0] = 0;
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= X; j++)
{
if (j >= price[i])
{
dp[i][j] = min(dp[i - 1][j], dp[i - 1][j - price[i]] + price[i]);
}
else {
dp[i][j] = min(dp[i - 1][j], price[i]);
}
}
}
cout << dp[n][X] << endl;
system("pause");
return 0;
}