所谓路径压缩,原理如下图:
并查集算法其实很常见,比如最小生成树的Kruskal算法的核心就是使用并查集算法啦。
这一题的思路就很清楚了,很快写出代码如下:
class Solution {
public:
int findCircleNum(vector<vector<int>>& M) {
int count = 0;
//先初始化每个单结点(每个单结点的根就是他们本身)
int*set = new int[M.size()];
for (int i = 0; i < M.size(); i++)
{
set[i] = i;
}
for (int i = 0; i < M.size(); i++)
for (int j = 0; j < M.size(); j++)
{
if (M[i][j] == 1)
{
merge(i, j, set);
}
}
for (int i = 0; i < M.size(); i++)
{
if (set[i] == i)//最终一个集合只有根结点符合这个条件
count++;
}
delete[] set;
return count;
}
int find(int x, int*set)//带路径压缩的并查集查找算法
{
int root = x;
while (set[root] != root)//先找到x的根
{
root = set[root];
}
int cur = x;//cur表示当前结点
while (cur != root)
{
int temp = set[cur];//记录当前结点的前驱结点
set[cur] = root;//路径压缩
cur = temp;//更新当前结点
}
return root;
}
void merge(int x, int y, int*set)//把x所在的集合和y所在的集合合并成一个大集合
{
int root1 = find(x, set);
int root2 = find(y, set);
if (root1 < root2)
set[root2] = root1;
else
set[root1] = root2;
}
};