OpenCv识别多条形码

这是一个关于使用OpenCV进行条形码识别的小工程,涵盖了图像预处理、条形码检测、识别及存储数据库的全过程。通过摄像头采集图像,经过预处理,提取条形码区域,再进行识别,并将识别结果存入数据库。
摘要由CSDN通过智能技术生成

这其实是一个小工程

完成的功能:

  • 使用摄像头采集图像进行预处理(检测部分)

  • 提取出预处理的条形码图像(识别部分)

  • 将条形码进行存入数据库(存储部分)

首先接到这个图像识别的小工程需要先确定这个工程的最初输入,和最后输出,输入就是普通的RGB图像,输出是数据库文件。

其中需要完成的过程,就是我需要做得功能,检测部分、识别部分和存储部分,话不多说,上部分代码:

//检测部分  需要用到opencv开源计算机视觉库
//输入是RGB  输出是保存的检测部分


Mat Check(Mat image)
{

    vector<vector<Point>> contours;
	vector<Vec4i> hiera;
	imshow("原图", image);

	//原图像大小调整,提高运算效率  
	//resize(image, image, Size(500, 300));
	//imshow("原图像", image); waitKey(15);		system("pause");



	//转化为灰度图  
	cvtColor(image, imageGray, CV_RGB2GRAY);
	//imshow("灰度图", imageGray); waitKey(15);		system("pause");

	//高斯平滑滤波  
	GaussianBlur(imageGray, imageGuussian, Size(3, 3), 0);
	//imshow("高斯平衡滤波", imageGuussian); waitKey(15);		system("pause");

	//求得水平和垂直方向灰度图像的梯度差,使用Sobel算子  
	Mat imageX16S, imageY16S;
	Sobel(imageGuussian, imageX16S, CV_16S, 1, 0, 3, 1, 0, 4);
	Sobel(imageGuussian, imageY16S, CV_16S, 0, 1, 3, 1, 0, 4);
	convertScaleAbs(imageX16S, imageSobelX, 1, 0);
	convertScaleAbs(imageY16S, imageSobelY, 1, 0);
	imageSobelOut = imageSobelX - imageSobelY;
	//imshow("X方向梯度", imageSobelX); waitKey(15);		system("pause");
	//imshow("Y方向梯度", imageSobelY); waitKey(15);		system("pause");
	//imshow("XY方向梯度差", imageSobelOut); waitKey(15);		system("pause");

	//均值滤波,消除高频噪声  
	blur(imageSobelOut, imageSobelOut, Size(3, 3));
	//imshow("均值滤波", imageSobelOut); waitKey(15);		system("pause");

	//二值化  
	Mat imageSobleOutThreshold;
	threshold(imageSobelOut, imageSobleOutThreshold, 100, 255, CV_THRESH_BINARY);
	//imshow("二值化", imageSobleOutThreshold); waitKey(15);	
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值