机器学习 笔记(二) Multi-class classification

这篇博客总结了Andrew Ng的Machine Learning公开课中关于多类分类的问题,特别是数字识别的应用。通过逻辑回归和神经网络两种方法进行讨论,强调了特征转换、神经网络模型设计以及初始化参数的重要性和技巧。在神经网络中,介绍了防止对称性破坏的初始化策略,并给出了初始化参数的公式。
摘要由CSDN通过智能技术生成

刚刚学了Andrew Ng在Coursera上的Machine Learning公开课,感觉在学习的过程中,有一些疑惑,尤其是各种算法之间的联系,以及在模型训练中遇到的普遍性的注意点,这里做一个回顾和总结。

Multi-class classification problem

案例:数字识别(0,1,2,…,9),待识别的数字图片如下所示,
这里写图片描述

Q1. 如何将数字的图像转变为向量?
A1.
1) 如果图片是20 pixel*20 pixel的数字灰度图像,可以取每个像素为基本单元,将每个单元灰度级用一个浮点数表示(0~1)。再将20*20的像素展开(unroll)为1个400维度的向量。
2)如果是RGB图像,每个像素用三个8位的数(0~255)表示,分别代表红、绿、蓝的强度(intensity)。

问题描述:特征为X,输出为y,要学习的参数为theta。

方法1. Logic regression algorithm
用逻辑回归算法,只需依次令y=k(0,1,2…9),将数字识别变成0-1分类问题,依次学习每个数字对应的参数,伪代码如下

for
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值