Counting Intersections
Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 1399 Accepted Submission(s): 441
Problem Description
Given some segments which are paralleled to the coordinate axis. You need to count the number of their intersection.
The input data guarantee that no two segments share the same endpoint, no covered segments, and no segments with length 0.
The input data guarantee that no two segments share the same endpoint, no covered segments, and no segments with length 0.
Input
The first line contains an integer T, indicates the number of test case.
The first line of each test case contains a number n(1<=n<=100000), the number of segments. Next n lines, each with for integers, x1, y1, x2, y2, means the two endpoints of a segment. The absolute value of the coordinate is no larger than 1e9.
The first line of each test case contains a number n(1<=n<=100000), the number of segments. Next n lines, each with for integers, x1, y1, x2, y2, means the two endpoints of a segment. The absolute value of the coordinate is no larger than 1e9.
Output
For each test case, output one line, the number of intersection.
Sample Input
2 4 1 0 1 3 2 0 2 3 0 1 3 1 0 2 3 2 4 0 0 2 0 3 0 3 2 3 3 1 3 0 3 0 2
Sample Output
4 0
Author
BUPT
Source
【思路】
将给定的线段处理为点,若线段与x轴平行,则保留左右端点,点的up值与down值都等于纵坐标,若线段与y轴平行,则处理作一个点,down值为下端点纵坐标,up值为上端点纵坐标,于是得到了三类点,kind为0代表左端点,kind为1代表竖线段,kind为2代表右端点。然后把点按照从左到右的顺序进行排序,再用扫描线从左到右扫一遍来统计交点个数就好了,统计时要用到树状数组单点更新、区间查询的操作。扫描线扫到的点,首先看是哪种类型的,若是左端点,则给这个点的纵坐标加1,若是竖线段,则计算出数组的[down,up]区间和,这些就是与该竖线段的交点数,若是右端点,则给这个点的纵坐标减1。这一过程应严格按照这个顺序,因为可能出现线段呈T形相交的情况。由于纵坐标的范围很大,所以要先离散化再维护树状数组。
【代码】
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
using namespace std;
const int MAXN=100005;
struct point{
int kind,pos,up,down;
bool operator<(const point &another)const
{
if(pos==another.pos)
return kind<another.kind;
return pos<another.pos;
}
};
int t,n,cnt,tot;
int height[MAXN*2];
long long a[MAXN*2];
point p[MAXN*2];
map<int,int> id;
void swap(int *a,int *b)
{
*a=*a^*b;
*b=*a^*b;
*a=*a^*b;
}
int lowbit(int x)
{
return (x&-x);
}
void modify(int x,int num)
{
while(x<=tot){
a[x]+=num;
x+=lowbit(x);
}
}
long long sum(int x)
{
long long ans=0;
while(x>0){
ans+=a[x];
x-=lowbit(x);
}
return ans;
}
int main()
{
scanf("%d",&t);
while(t--){
scanf("%d",&n);
cnt=0;tot=0;
id.clear();
for(int i=1;i<=n;i++){
int x1,y1,x2,y2;
scanf("%d %d %d %d",&x1,&y1,&x2,&y2);
if(!id.count(y1)){
id[y1]=0;
height[++tot]=y1;
}
if(!id.count(y2)){
id[y2]=0;
height[++tot]=y2;
}
if(x1==x2){
if(y1>y2)swap(&y1,&y2);
p[++cnt].kind=1;p[cnt].pos=x1;
p[cnt].down=y1;p[cnt].up=y2;
}
else
if(y1==y2){
if(x1>x2)swap(&x1,&x2);
p[++cnt].kind=0;p[cnt].pos=x1;
p[cnt].up=p[cnt].down=y1;
p[++cnt].kind=2;p[cnt].pos=x2;
p[cnt].up=p[cnt].down=y2;
}
}
sort(height+1,height+1+tot);
for(int i=1;i<=tot;i++)
id[height[i]]=i;
sort(p+1,p+1+cnt);
memset(a,0,sizeof(a));
long long ans=0;
for(int i=1;i<=cnt;i++){
if(p[i].kind==0)
modify(id[p[i].up],1);
if(p[i].kind==1)
ans+=(sum(id[p[i].up])-sum(id[p[i].down]-1));
if(p[i].kind==2)
modify(id[p[i].up],-1);
}
printf("%lld\n",ans);
}
return 0;
}